[1] |
Auer, T.O., Duroure, K., De Cian, A. et al. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair Genome Res., 24 (2014),pp. 142-153
|
[2] |
Baena-Lopez, L.A., Alexandre, C., Mitchell, A. et al. Development, 140 (2013),pp. 4818-4825
|
[3] |
Barrangou, R., Fremaux, C., Deveau, H. et al. CRISPR provides acquired resistance against viruses in prokaryotes Science, 315 (2007),pp. 1709-1712
|
[4] |
Barrangou, R., Marraffini, L.A. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity Mol. Cell, 54 (2014),pp. 234-244
|
[5] |
Bassett, A.R., Liu, J.-L. J. Genet. Genomics, 41 (2014),pp. 7-19
|
[6] |
Bassett, A.R., Tibbit, C., Ponting, C.P. et al. Cell Rep., 4 (2013),pp. 220-228
|
[7] |
Beumer, K.J.K., Trautman, J.K.J., Mukherjee, K. et al. Donor DNA utilization during gene targeting with zinc-finger nucleases G3 (Bethesda), 3 (2013),pp. 657-664
|
[8] |
Bolotin, A., Quinquis, B., Sorokin, A. et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin Microbiology, 151 (2005),pp. 2551-2561
|
[9] |
Bondy-Denomy, J., Davidson, A.R. To acquire or resist: the complex biological effects of CRISPR-Cas systems Trends Microbiol., 22 (2014),pp. 218-225
|
[10] |
Brand, A.H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes Development, 118 (1993),pp. 401-415
|
[11] |
Brouns, S.J.J., Jore, M.M., Lundgren, M. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes Science, 321 (2008),pp. 960-964
|
[12] |
Chen, B., Gilbert, L.A., Cimini, B.A. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system Cell, 155 (2013),pp. 1479-1491
|
[13] |
Chen, H.-M., Huang, Y., Pfeiffer, B.D. et al. Genetics, 199 (2015),pp. 683-694
|
[14] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[15] |
Deveau, H., Garneau, J.E., Moineau, S. CRISPR/Cas system and its role in phage-bacteria interactions Annu. Rev. Microbiol., 64 (2010),pp. 475-493
|
[16] |
Dickinson, D.J., Ward, J.D., Reiner, D.J. et al. Nat. Methods, 10 (2013),pp. 1028-1034
|
[17] |
Friedland, A.E., Tzur, Y.B., Esvelt, K.M. et al. Nat. Methods, 10 (2013),pp. 741-743
|
[18] |
Fu, Y., Foden, J.A., Khayter, C. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells Nat. Biotechnol., 31 (2013),pp. 822-826
|
[19] |
Fu, Y., Sander, J.D., Reyon, D. et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs Nat. Biotechnol., 32 (2014),pp. 279-284
|
[20] |
Gasiunas, G., Barrangou, R., Horvath, P. et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria Proc. Natl. Acad. Sci. USA, 109 (2012),pp. E2579-E2586
|
[21] |
Gokcezade, J., Sienski, G., Duchek, P. G3 (Bethesda), 4 (2014),pp. 2279-2282
|
[22] |
Gratz, S.J., Cummings, A.M., Nguyen, J.N. et al. Genetics, 194 (2013),pp. 1029-1035
|
[23] |
Gratz, S.J., Ukken, F.P., Rubinstein, C.D. et al. Genetics, 196 (2014),pp. 961-971
|
[24] |
Haft, D.H., Selengut, J., Mongodin, E.F. et al. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes PLoS Comput. Biol., 1 (2005),p. e60
|
[25] |
Hale, C.R., Zhao, P., Olson, S. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex Cell, 139 (2009),pp. 945-956
|
[26] |
Hatoum-Aslan, A., Maniv, I., Marraffini, L.A. Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 21218-21222
|
[27] |
Haurwitz, R.E., Jinek, M., Wiedenheft, B. et al. Sequence- and structure-specific RNA processing by a CRISPR endonuclease Science, 329 (2010),pp. 1355-1358
|
[28] |
Horvath, P., Romero, D.A., Coûté-Monvoisin, A.-C. et al. J. Bacteriol., 190 (2008),pp. 1401-1412
|
[29] |
Hou, Z., Zhang, Y., Propson, N.E. et al. Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 15644-15649
|
[30] |
Housden, B.E., Lin, S., Perrimon, N.
|
[31] |
Hruscha, A., Krawitz, P., Rechenberg, A. et al. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish Development, 140 (2013),pp. 4982-4987
|
[32] |
Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
|
[33] |
Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol., 31 (2013),pp. 827-832
|
[34] |
Hwang, W.Y., Fu, Y., Reyon, D. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 227-229
|
[35] |
Ishino, Y., Shinagawa, H., Makino, K. et al. J. Bacteriol., 169 (1987),pp. 5429-5433
|
[36] |
Jansen, R., Embden, J.D., Gaastra, W. et al. Identification of genes that are associated with DNA repeats in prokaryotes Mol. Microbiol., 43 (2002),pp. 1565-1575
|
[37] |
Jiang, W., Bikard, D., Cox, D. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems Nat. Biotechnol., 31 (2013),pp. 233-239
|
[38] |
Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
|
[39] |
Jinek, M., East, A., Cheng, A. et al. RNA-programmed genome editing in human cells eLife, 2 (2013),p. e00471
|
[40] |
Kim, H., Ishidate, T., Ghanta, K.S. et al. Genetics, 197 (2014),pp. 1069-1080
|
[41] |
Kondo, S., Ueda, R. Genetics, 195 (2013),pp. 715-721
|
[42] |
Konermann, S., Brigham, M.D., Trevino, A.E. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex Nature, 517 (2014),pp. 583-588
|
[43] |
Kuscu, C., Arslan, S., Singh, R. et al. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease Nat. Biotechnol., 32 (2014),pp. 677-683
|
[44] |
Li, M., Wang, R., Xiang, H. Nucleic Acids Res., 42 (2014),pp. 7226-7235
|
[45] |
Lin, S.-C., Chang, Y.-Y., Chan, C.-C. Cell Biosci., 4 (2014),p. 63
|
[46] |
Liu, D., Wang, Z., Xiao, A. et al. J. Genet. Genomics, 41 (2014),pp. 43-46
|
[47] |
Maeder, M.L., Linder, S.J., Cascio, V.M. et al. CRISPR RNA-guided activation of endogenous human genes Nat. Methods, 10 (2013),pp. 977-979
|
[48] |
Makarova, K.S., Aravind, L., Wolf, Y.I. et al. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems Biol. Direct, 6 (2011),p. 38
|
[49] |
Makarova, K.S., Grishin, N.V., Shabalina, S.A. et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action Biol. Direct, 1 (2006),p. 7
|
[50] |
Makarova, K.S., Haft, D.H., Barrangou, R. et al. Evolution and classification of the CRISPR-Cas systems Nat. Rev. Microbiol., 9 (2011),pp. 467-477
|
[51] |
Mali, P., Aach, J., Stranges, P.B. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering Nat. Biotechnol., 31 (2013),pp. 833-838
|
[52] |
Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
|
[53] |
Marraffini, L.A., Sontheimer, E.J. Science, 322 (2008),pp. 1843-1845
|
[54] |
Mohr, S.E., Smith, J.A., Shamu, C.E. et al. RNAi screening comes of age: improved techniques and complementary approaches Nat. Rev. Mol. Cell Biol., 15 (2014),pp. 591-600
|
[55] |
Mojica, F.J., Díez-Villaseñor, C., Soria, E. et al. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria Mol. Microbiol., 36 (2000),pp. 244-246
|
[56] |
Mojica, F.J.M., Díez-Villaseñor, C., García-Martínez, J. et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements J. Mol. Evol., 60 (2005),pp. 174-182
|
[57] |
Nam, K.H., Haitjema, C., Liu, X. et al. Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system Structure, 20 (2012),pp. 1574-1584
|
[58] |
Ni, J.-Q., Zhou, R., Czech, B. et al. Nat. Methods, 8 (2011),pp. 405-407
|
[59] |
Pattanayak, V., Lin, S., Guilinger, J.P. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity Nat. Biotechnol., 31 (2013),pp. 839-843
|
[60] |
Perez-Pinera, P., Kocak, D.D., Vockley, C.M. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors Nat. Methods, 10 (2013),pp. 973-976
|
[61] |
Port, F., Chen, H.-M., Lee, T. et al. Proc. Natl. Acad. Sci. USA, 111 (2014),pp. E2967-E2976
|
[62] |
Pourcel, C., Salvignol, G., Vergnaud, G. Microbiology, 151 (2005),pp. 653-663
|
[63] |
Qi, L.S., Larson, M.H., Gilbert, L.A. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell, 152 (2013),pp. 1173-1183
|
[64] |
Ren, X., Sun, J., Housden, B.E. et al. Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 19012-19017
|
[65] |
Ren, X., Yang, Z., Mao, D. et al. G3 (Bethesda), 4 (2014),pp. 1955-1962
|
[66] |
Ren, X., Yang, Z., Xu, J. et al. Cell Rep., 9 (2014),pp. 1151-1162
|
[67] |
Rouillon, C., Zhou, M., Zhang, J. et al. Structure of the CRISPR interference complex CSM reveals key similarities with cascade Mol. Cell, 52 (2013),pp. 124-134
|
[68] |
Sanjana, N.E., Shalem, O., Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening Nat. Methods, 11 (2014),pp. 783-784
|
[69] |
Sebo, Z.L., Lee, H.B., Peng, Y. et al. Fly (Austin), 8 (2014),pp. 52-57
|
[70] |
Shah, S.A., Erdmann, S., Mojica, F.J.M. et al. Protospacer recognition motifs: mixed identities and functional diversity RNA Biol., 10 (2013),pp. 891-899
|
[71] |
Shalem, O., Sanjana, N.E., Hartenian, E. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells Science, 343 (2014),pp. 84-87
|
[72] |
Stern, D.L. Nature, 396 (1998),pp. 463-466
|
[73] |
Sung, Y.H., Kim, J.M., Kim, H.-T. et al. Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases Genome Res., 24 (2014),pp. 125-131
|
[74] |
Tang, T.-H., Bachellerie, J.-P., Rozhdestvensky, T. et al. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 7536-7541
|
[75] |
Tsai, S.Q., Zheng, Z., Nguyen, N.T. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases Nat. Biotechnol., 33 (2015),pp. 187-197
|
[76] |
Turner, T.L. Fine-mapping natural alleles: quantitative complementation to the rescue Mol. Ecol., 23 (2014),pp. 2377-2382
|
[77] |
van der Oost, J., Westra, E.R., Jackson, R.N. et al. Unravelling the structural and mechanistic basis of CRISPR-Cas systems Nat. Rev. Microbiol., 12 (2014),pp. 479-492
|
[78] |
Wang, H., Yang, H., Shivalila, C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell, 153 (2013),pp. 910-918
|
[79] |
Wang, T., Wei, J.J., Sabatini, D.M. et al. Genetic screens in human cells using the CRISPR-Cas9 system Science, 343 (2014),pp. 80-84
|
[80] |
Wangler, M.F., Yamamoto, S., Bellen, H.J. Fruit flies in biomedical research Genetics, 199 (2015),pp. 639-653
|
[81] |
Wei, C., Liu, J., Yu, Z. et al. TALEN or Cas9-rapid, efficient and specific choices for genome modifications J. Genet. Genomics, 40 (2013),pp. 281-289
|
[82] |
Wu, X., Scott, D.A., Kriz, A.J. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells Nat. Biotechnol., 32 (2014),pp. 670-676
|
[83] |
Xue, Z., Ren, M., Wu, M. et al. G3 (Bethesda), 4 (2014),pp. 925-929
|
[84] |
Xue, Z., Wu, M., Wen, K. et al. G3 (Bethesda), 4 (2014),pp. 2167-2173
|
[85] |
Yang, H., Wang, H., Shivalila, C.S. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering Cell, 154 (2013),pp. 1370-1379
|
[86] |
Yin, H., Xue, W., Chen, S. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype Nat. Biotechnol., 32 (2014),pp. 551-553
|
[87] |
Yu, Z., Ren, M., Wang, Z. et al. Genetics, 195 (2013),pp. 289-291
|
[88] |
Zhang, X., Koolhaas, W.H., Schnorrer, F. G3 (Bethesda), 4 (2014),pp. 2409-2418
|