[1] |
Adzhubei, I.A., Schmidt, S., Peshkin, L. et al. A method and server for predicting damaging missense mutations Nat. Methods, 7 (2010),pp. 248-249
|
[2] |
Akey, J.M., Zhang, G., Zhang, K. et al. Interrogating a high-density SNP map for signatures of natural selection Genome Res., 12 (2002),pp. 1805-1814
|
[3] |
Beall, C.M., Cavalleri, G.L., Deng, L. et al. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 11459-11464
|
[4] |
Bigham, A., Bauchet, M., Pinto, D. et al. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data PLoS Genet., 6 (2010),p. e1001116
|
[5] |
Gou, X., Wang, Z., Li, N. et al. Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia Genome Res., 24 (2014),pp. 1308-1315
|
[6] |
Ji, L.D., Qiu, Y.Q., Xu, J. et al. Genetic adaptation of the hypoxia-inducible factor pathway to oxygen pressure among eurasian human populations Mol. Biol. Evol., 29 (2012),pp. 3359-3370
|
[7] |
Key, J., Scheuermann, T.H., Anderson, P.C. et al. Principles of ligand binding within a completely buried cavity in HIF2alpha PAS-B J. Am. Chem. Soc., 131 (2009),pp. 17647-17654
|
[8] |
Lee, F.S., Percy, M.J. The HIF pathway and erythrocytosis Annu. Rev. Pathol., 6 (2011),pp. 165-192
|
[9] |
Mairbaurl, H., Weber, R.E. Oxygen transport by hemoglobin Compr. Physiol., 2 (2012),pp. 1463-1489
|
[10] |
Natarajan, C., Inoguchi, N., Weber, R.E. et al. Epistasis among adaptive mutations in deer mouse hemoglobin Science, 340 (2013),pp. 1324-1327
|
[11] |
Sabeti, P.C., Reich, D.E., Higgins, J.M. et al. Detecting recent positive selection in the human genome from haplotype structure Nature, 419 (2002),pp. 832-837
|
[12] |
Savolainen, P., Zhang, Y.P., Luo, J. et al. Genetic evidence for an East Asian origin of domestic dogs Science, 298 (2002),pp. 1610-1613
|
[13] |
Simonson, T.S., Yang, Y., Huff, C.D. et al. Genetic evidence for high-altitude adaptation in Tibet Science, 329 (2010),pp. 72-75
|
[14] |
Storz, J.F., Moriyama, H. Mechanisms of hemoglobin adaptation to high altitude hypoxia High Alt. Med. Biol., 9 (2008),pp. 148-157
|
[15] |
Tang, K., Thornton, K.R., Stoneking, M. A new approach for using genome scans to detect recent positive selection in the human genome PLoS Biol., 5 (2007),p. e171
|
[16] |
Wang, G.D., Fan, R.X., Zhai, W. et al. Genetic convergence in the adaptation of dogs and humans to the high-altitude environment of the tibetan plateau Genome Biol. Evol., 6 (2014),pp. 2122-2128
|
[17] |
Wang, G.D., Zhai, W., Yang, H.C. et al. The genomics of selection in dogs and the parallel evolution between dogs and humans Nat. Commun., 4 (2013),p. 1860
|
[18] |
Weir, B.S., Cockerham, C.C. Estimating F-statistics for the analysis of population structure Evolution, 38 (1984),pp. 1358-1370
|
[19] |
Yi, X., Liang, Y., Huerta-Sanchez, E. et al. Sequencing of 50 human exomes reveals adaptation to high altitude Science, 329 (2010),pp. 75-78
|
[20] |
Zhao, M., Kong, Q.P., Wang, H.W. et al. Mitochondrial genome evidence reveals successful Late Paleolithic settlement on the Tibetan Plateau Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 21230-21235
|