[1] |
Bao, X., Wu, H., Zhu, X. et al. Cell Res., 25 (2015),pp. 80-92
|
[2] |
Bartel, D.P. MicroRNAs: target recognition and regulatory functions Cell, 136 (2009),pp. 215-233
|
[3] |
Bosson, A.D., Zamudio, J.R., Sharp, P.A. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition Mol. Cell, 56 (2014),pp. 347-359
|
[4] |
Brown, J.A., Bulkley, D., Wang, J. et al. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix Nat. Struct. Mol. Biol., 21 (2014),pp. 633-640
|
[5] |
Carninci, P., Kasukawa, T., Katayama, S. et al. The transcriptional landscape of the mammalian genome Science, 309 (2005),pp. 1559-1563
|
[6] |
Cao, Y., Guo, W.T., Tian, S. et al. MiR-290/371-Mbd2-Myc circuit regulates glycolytic metabolism to promote pluripotency EMBO J. (2015)
|
[7] |
Carrieri, C., Cimatti, L., Biagioli, M. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat Nature, 491 (2012),pp. 454-457
|
[8] |
Chu, C., Quinn, J., Chang, H.Y. Chromatin isolation by RNA purification (ChIRP) J. Vis. Exp., 61 (2012),p. 3912
|
[9] |
Clamp, M., Fry, B., Kamal, M. et al. Distinguishing protein-coding and noncoding genes in the human genome Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 19428-19433
|
[10] |
Denzler, R., Agarwal, V., Stefano, J. et al. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance Mol. Cell, 54 (2014),pp. 766-776
|
[11] |
Derrien, T., Johnson, R., Bussotti, G. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression Genome Res., 22 (2012),pp. 1775-1789
|
[12] |
Dinger, M.E., Amaral, P.P., Mercer, T.R. et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation Genome Res., 18 (2008),pp. 1433-1445
|
[13] |
Djebali, S., Davis, C.A., Merkel, A. et al. Landscape of transcription in human cells Nature, 489 (2012),pp. 101-108
|
[14] |
ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome Nature, 489 (2012),pp. 57-74
|
[15] |
Engreitz, J.M., Pandya-Jones, A., McDonel, P. et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome Science, 341 (2013),p. 1237973
|
[16] |
Engreitz, J.M., Sirokman, K., McDonel, P. et al. RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites Cell, 159 (2014),pp. 188-199
|
[17] |
Folmes, C.D., Nelson, T.J., Martinez-Fernandez, A. et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming Cell Metab., 14 (2011),pp. 264-271
|
[18] |
Guo, J.U., Agarwal, V., Guo, H. et al. Expanded identification and characterization of mammalian circular RNAs Genome Biol., 15 (2014),p. 409
|
[19] |
Guo, W.T., Wang, X.W., Wang, Y. Micro-management of pluripotent stem cells Protein Cell, 5 (2014),pp. 36-47
|
[20] |
Guttman, M., Donaghey, J., Carey, B.W. et al. lincRNAs act in the circuitry controlling pluripotency and differentiation Nature, 477 (2011),pp. 295-300
|
[21] |
Guttman, M., Russell, P., Ingolia, N.T. et al. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins Cell, 154 (2013),pp. 240-251
|
[22] |
Han, H., Irimia, M., Ross, P.J. et al. MBNL proteins repress ES-cell-specific alternative splicing and reprogramming Nature, 498 (2013),pp. 241-245
|
[23] |
Hansen, T.B., Jensen, T.I., Clausen, B.H. et al. Natural RNA circles function as efficient microRNA sponges Nature, 495 (2013),pp. 384-388
|
[24] |
Hasegawa, Y., Brockdorff, N., Kawano, S. et al. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA Dev. Cell, 19 (2010),pp. 469-476
|
[25] |
Hassani, S.N., Totonchi, M., Gourabi, H. et al. Signaling roadmap modulating naive and primed pluripotency Stem Cells Dev., 23 (2014),pp. 193-208
|
[26] |
Hillier, L.W., Coulson, A., Murray, J.I. et al. Genome Res., 15 (2005),pp. 1651-1660
|
[27] |
Ingolia, N.T., Brar, G.A., Stern-Ginossar, N. et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes Cell Rep., 8 (2014),pp. 1365-1379
|
[28] |
Jeon, Y., Lee, J.T. Cell, 146 (2011),pp. 119-133
|
[29] |
Kim, V.N., Han, J., Siomi, M.C. Biogenesis of small RNAs in animals Nat. Rev. Mol. Cell Biol., 10 (2009),pp. 126-139
|
[30] |
Klattenhoff, C.A., Scheuermann, J.C., Surface, L.E. et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment Cell, 152 (2013),pp. 570-583
|
[31] |
Kondoh, H., Lleonart, M.E., Nakashima, Y. et al. A high glycolytic flux supports the proliferative potential of murine embryonic stem cells Antioxid. Redox. Signal., 9 (2007),pp. 293-299
|
[32] |
Kong, L., Zhang, Y., Ye, Z.Q. et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine Nucleic Acids Res., 35 (2007),pp. W345-W349
|
[33] |
Kretz, M., Siprashvili, Z., Chu, C. et al. Nature, 493 (2013),pp. 231-235
|
[34] |
Kutter, C., Watt, S., Stefflova, K. et al. Rapid turnover of long noncoding RNAs and the evolution of gene expression PLoS Genet., 8 (2012),p. e1002841
|
[35] |
Lackford, B., Yao, C., Charles, G.M. et al. Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal EMBO J., 33 (2014),pp. 878-889
|
[36] |
Lin, M.F., Jungreis, I., Kellis, M. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions Bioinformatics, 27 (2011),pp. 275-282
|
[37] |
Lin, N., Chang, K.,Y. et al. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment Mol. Cell, 53 (2014),pp. 1005-1019
|
[38] |
Loewer, S., Cabili, M.N., Guttman, M. et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells Nat. Genet., 42 (2010),pp. 1113-1117
|
[39] |
Memczak, S., Jens, M., Elefsinioti, A. et al. Circular RNAs are a large class of animal RNAs with regulatory potency Nature, 495 (2013),pp. 333-338
|
[40] |
Ng, H.H., Surani, M.A. The transcriptional and signalling networks of pluripotency Nat. Cell Biol., 13 (2011),pp. 490-496
|
[41] |
Nichols, J., Smith, A. Pluripotency in the embryo and in culture Cold Spring Harb Perspect Biol., 4 (2012),p. a008218
|
[42] |
Okazaki, Y., Furuno, M., Kasukawa, T. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs Nature, 420 (2002),pp. 563-573
|
[43] |
Pauli, A., Valen, E., Lin, M.F. et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis Genome Res., 22 (2012),pp. 577-591
|
[44] |
Rinn, J.L., Kertesz, M., Wang, J.K. et al. Cell, 129 (2007),pp. 1311-1323
|
[45] |
Rinn, J.L., Chang, H.Y. Genome regulation by long noncoding RNAs Annu. Rev. Biochem., 81 (2012),pp. 145-166
|
[46] |
Sauvageau, M., Goff, L.A., Lodato, S. et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development eLife, 2 (2013),p. e01749
|
[47] |
Schmitz, K.M., Mayer, C., Postepska, A. et al. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes Genes Dev., 24 (2010),pp. 2264-2269
|
[48] |
Schratt, G., Weinhold, B., Lundberg, A.S. et al. Serum response factor is required for immediate-early gene activation yet is dispensable for proliferation of embryonic stem cells Mol. Cell Biol., 21 (2001),pp. 2933-2943
|
[49] |
Taft, R.J., Pheasant, M., Mattick, J.S. The relationship between non-protein-coding DNA and eukaryotic complexity Bioessays, 29 (2007),pp. 288-299
|
[50] |
Tay, Y., Rinn, J., Pandolfi, P.P. The multilayered complexity of ceRNA crosstalk and competition Nature, 505 (2014),pp. 344-352
|
[51] |
Tee, W.W., Reinberg, D. Chromatin features and the epigenetic regulation of pluripotency states in ESCs Development, 141 (2014),pp. 2376-2390
|
[52] |
Tiscornia, G., Izpisúa Belmonte, J.C. MicroRNAs in embryonic stem cell function and fate Genes Dev., 24 (2010),pp. 2732-2741
|
[53] |
Tsai, M.C., Manor, O., Wan, Y. et al. Long noncoding RNA as modular scaffold of histone modification complexes Science, 329 (2010),pp. 689-693
|
[54] |
Ulitsky, I., Shkumatava, A., Jan, C.H. et al. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution Cell, 147 (2011),pp. 1537-1550
|
[55] |
Wang, K.C., Yang, Y.W., Liu, B. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression Nature, 472 (2011),pp. 120-124
|
[56] |
Wang, K.C., Chang, H.Y. Molecular mechanisms of long noncoding RNAs Mol. Cell, 43 (2011),pp. 904-914
|
[57] |
Wang, L., Miao, Y.L., Zheng, X. et al. The THO complex regulates pluripotency gene mRNA export and controls embryonic stem cell self-renewal and somatic cell reprogramming Cell Stem Cell, 13 (2013),pp. 676-690
|
[58] |
Wang, P., Xue, Y., Han, Y. et al. Science, 344 (2014),pp. 310-313
|
[59] |
Wang, Y., Xu, Z., Jiang, J. et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal Dev. Cell, 25 (2013),pp. 69-80
|
[60] |
Wang, Y., Blelloch, R. Cell cycle regulation by microRNAs in stem cells Results Probl. Cell Differ., 53 (2011),pp. 459-472
|
[61] |
Wapinski, O., Chang, H.Y. Long noncoding RNAs and human disease Trends Cell Biol., 21 (2011),pp. 354-361
|
[62] |
Wilusz, J.E., JnBaptiste, C.K., Lu, L.Y. et al. Genes Dev., 26 (2012),pp. 2392-2407
|
[63] |
Xu, N., Papagiannakopoulos, T., Pan, G. et al. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells Cell, 137 (2009),pp. 647-658
|
[64] |
Yin, Q.F., Yang, L., Zhang, Y. et al. Long noncoding RNAs with snoRNA ends Mol. Cell, 48 (2012),pp. 219-230
|
[65] |
Zheng, G.X., Do, B.T., Webster, D.E. et al. Dicer-microRNA-Myc circuit promotes transcription of hundreds of long noncoding RNAs Nat. Struct. Mol. Biol., 21 (2014),pp. 585-590
|
[66] |
Zhou, W., Choi, M., Margineantu, D. et al. HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition EMBO J., 31 (2012),pp. 2103-2116
|