[1] |
Alegre, M.M., Weyant, M.J., Bennett, D.T. et al. Serum detection of thymidine kinase 1 as a means of early detection of lung cancer Anticancer Res., 34 (2014),pp. 2145-2151
|
[2] |
Ardiani, A., Johnson, A.J., Ruan, H. et al. Enzymes to die for: exploiting nucleotide metabolizing enzymes for cancer gene therapy Curr. Gene Ther., 12 (2012),pp. 77-91
|
[3] |
Berenstein, D., Christensen, J.F., Kristensen, T. et al. Valine, not methionine, is amino acid 106 in human cytosolic thymidine kinase (TK1). Impact on oligomerization, stability, and kinetic properties J. Biol. Chem., 275 (2000),pp. 32187-32192
|
[4] |
Birringer, M.S., Claus, M.T., Folkers, G. et al. Structure of a type II thymidine kinase with bound dTTP FEBS Lett., 579 (2005),pp. 1376-1382
|
[5] |
Bohman, C., Eriksson, S. Deoxycytidine kinase from human leukemic spleen: preparation and characteristics of homogeneous enzyme Biochemistry, 27 (1988),pp. 4258-4265
|
[6] |
Bondanza, A., Hambach, L., Aghai, Z. et al. Blood, 117 (2011),pp. 6469-6478
|
[7] |
, Deininger, P.L. Human thymidine kinase gene: molecular cloning and nucleotide sequence of a cDNA expressible in mammalian cells Mol. Cell. Biol., 4 (1984),pp. 2316-2320
|
[8] |
Carnrot, C., Wehelie, R., Eriksson, S. et al. Mol. Microbiol., 50 (2003),pp. 771-780
|
[9] |
Carnrot, C., Vogel, S.R., Byun, Y. et al. Biol. Chem., 387 (2006),pp. 1575-1581
|
[10] |
Chen, F., Tang, L., Xia, T. et al. Serum thymidine kinase 1 levels predict cancer-free survival following neoadjuvant, surgical and adjuvant treatment of patients with locally advanced breast cancer Mol. Clin. Oncol., 1 (2013),pp. 894-902
|
[11] |
Chen, L.S., Wang, M., Ou, W.C. et al. Efficient gene transfer using the human JC virus-like particle that inhibits human colon adenocarcinoma growth in a nude mouse model Gene Ther., 17 (2010),pp. 1033-1041
|
[12] |
Chen, Z., Zhou, H., Li, S. et al. Serological thymidine kinase 1 (STK1) indicates an elevated risk for the development of malignant tumours Anticancer Res., 28 (2008),pp. 3897-3907
|
[13] |
Chen, Z.H., Huang, S.Q., Wang, Y. et al. Serological thymidine kinase 1 is a biomarker for early detection of tumours–a health screening study on 35,365 people, using a sensitive chemiluminescent dot blot assay Sensors, 11 (2011),pp. 11064-11080
|
[14] |
Chottiner, E.G., Shewach, D.S., Datta, N.S. et al. Cloning and expression of human deoxycytidine kinase cDNA Proc. Natl. Acad. Sci. USA, 88 (1991),pp. 1531-1535
|
[15] |
Clausen, A.R., Girandon, L., Ali, A. et al. FEBS J., 279 (2012),pp. 3889-3897
|
[16] |
Clausen, A.R., Mutahir, Z., Munch-Petersen, B. et al. Plants salvage deoxyribonucleosides in mitochondria Nucleosides Nucleotides Nucleic Acids, 33 (2014),pp. 291-295
|
[17] |
Egeblad-Welin, L., Sonntag, Y., Eklund, H. et al. FEBS J., 274 (2007),pp. 1542-1551
|
[18] |
Egeblad, L., Welin, M., Flodin, S. et al. Pan-pathway based interaction profiling of FDA-approved nucleoside and nucleobase analogs with enzymes of the human nucleotide metabolism PLoS One, 7 (2012),p. e37724
|
[19] |
Eriksson, S. Is the expression of deoxynucleoside kinases and 5′-nucleotidases in animal tissues related to the biological effects of nucleoside analogs? Curr. Med. Chem., 20 (2013),pp. 4241-4248
|
[20] |
Eriksson, S., Munch-Petersen, B., Johansson, K. et al. Structure and function of cellular deoxyribonucleoside kinases Cell. Mol. Life Sci., 59 (2002),pp. 1327-1346
|
[21] |
Freeman, S.M., Abboud, C.N., Whartenby, K.A. et al. The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified Cancer Res., 53 (1993),pp. 5274-5283
|
[22] |
Fukuda, Y., Schuetz, J.D. ABC transporters and their role in nucleoside and nucleotide drug resistance Biochem. Pharm., 83 (2012),pp. 1073-1083
|
[23] |
Godsey, M.H., Ort, S., Sabini, E. et al. Structural basis for the preference of UTP over ATP in human deoxycytidine kinase: illuminating the role of main-chain reorganization Biochemistry, 45 (2006),pp. 452-461
|
[24] |
Greish, K., Frandsen, J., Scharff, S. et al. Silk-elastinlike protein polymers improve the efficacy of adenovirus thymidine kinase enzyme prodrug therapy of head and neck tumors J. Gene. Med., 12 (2010),pp. 572-579
|
[25] |
Guittet, O., Hakansson, P., Voevodskaya, N. et al. J. Biol. Chem., 276 (2001),pp. 40647-40651
|
[26] |
Hapke, D.M., Stegmann, A.P., Mitchell, B.S. Retroviral transfer of deoxycytidine kinase into tumor cell lines enhances nucleoside toxicity Cancer Res., 56 (1996),pp. 2343-2347
|
[27] |
Hazra, S., Konrad, M., Lavie, A. The sugar ring of the nucleoside is required for productive substrate positioning in the active site of human deoxycytidine kinase (dCK): implications for the development of dCK-activated acyclic guanine analogues J. Med. Chem., 53 (2010),pp. 5792-5800
|
[28] |
Hazra, S., Ort, S., Konrad, M. et al. Structural and kinetic characterization of human deoxycytidine kinase variants able to phosphorylate 5-substituted deoxycytidine and thymidine analogues Biochemistry, 49 (2010),pp. 6784-6790
|
[29] |
Hazra, S., Sabini, E., Ort, S. et al. Extending thymidine kinase activity to the catalytic repertoire of human deoxycytidine kinase Biochemistry, 48 (2009),pp. 1256-1263
|
[30] |
Hazra, S., Szewczak, A., Ort, S. et al. Post-translational phosphorylation of serine 74 of human deoxycytidine kinase favors the enzyme adopting the open conformation making it competent for nucleoside binding and release Biochemistry, 50 (2011),pp. 2870-2880
|
[31] |
Hebrard, C., Cros-Perrial, E., Clausen, A.R. et al. Bacterial deoxyribonucleoside kinases are poor suicide genes in mammalian cells Nucleosides Nucleotides Nucleic Acids, 28 (2009),pp. 1068-1075
|
[32] |
Huber, B.E., Austin, E.A., Richards, C.A. et al. Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase Proc. Natl. Acad. Sci. USA, 91 (1994),pp. 8302-8306
|
[33] |
Ihlenfeldt, H.G.D., Munch-Petersen, B.D., Piskur, J.D., Sondergaard, L.D., 2000. Deoxynucleoside kinase from insect cells for the synthesis of nucleoside monophosphates. Patentapplication: EP0999275 A2.
|
[34] |
Ihlenfeldt, H.G.D., Munch-Petersen, B.D., Piskur, J.D., Sondergaard, L.D., 2005. Deoxynucleoside kinase from insect cells for the synthesis of nucleoside monophosphates. Patent: EP0999275 B1.
|
[35] |
Immonen, A., Vapalahti, M., Tyynela, K. et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study Mol. Ther., 10 (2004),pp. 967-972
|
[36] |
Jessop, T.C., Tarver, J.E., Carlsen, M. et al. Lead optimization and structure-based design of potent and bioavailable deoxycytidine kinase inhibitors Bioorganic Med. Chem. Lett., 19 (2009),pp. 6784-6787
|
[37] |
Johansson, K., Ramaswamy, S., Ljungcrantz, C. et al. Structural basis for substrate specificities of cellular deoxyribonucleoside kinases Nat. Struc. Biol., 8 (2001),pp. 616-620
|
[38] |
Johansson, M., Karlsson, A. Cloning and expression of human deoxyguanosine kinase cDNA Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 7258-7262
|
[39] |
Johansson, M., Karlsson, A. Cloning of the cDNA and chromosome localization of the gene for human thymidine kinase 2 J. Biol. Chem., 272 (1997),pp. 8454-8458
|
[40] |
Jordan, A., Reichard, P. Ribonucleotide reductases Ann. Rev. Biochem., 67 (1998),pp. 71-98
|
[41] |
Jordheim, L.P., Dumontet, C. Review of recent studies on resistance to cytotoxic deoxynucleoside analogues Biochim. Biophys. Acta, 1776 (2007),pp. 138-159
|
[42] |
Jordheim, L.P., Galmarini, C.M., Dumontet, C. Gemcitabine resistance due to deoxycytidine kinase deficiency can be reverted by fruitfly deoxynucleoside kinase, DmdNK, in human uterine sarcoma cells Cancer Chemother. Pharm., 58 (2006),pp. 547-554
|
[43] |
Kakinoki, K., Nakamoto, Y., Kagaya, T. et al. Prevention of intrahepatic metastasis of liver cancer by suicide gene therapy and chemokine ligand 2/monocyte chemoattractant protein-1 delivery in mice J. Gene Med., 12 (2010),pp. 1002-1013
|
[44] |
Kappock, T.J., Ealick, S.E., Stubbe, J. Modular evolution of the purine biosynthetic pathway Curr. Opin. Chem. Biol., 4 (2000),pp. 567-572
|
[45] |
Ke, P.Y., Chang, Z.F. Mitotic degradation of human thymidine kinase 1 is dependent on the anaphase-promoting complex/cyclosome-CDH1-mediated pathway Mol. Cell. Biol., 24 (2004),pp. 514-526
|
[46] |
Khan, Z., Knecht, W., Willer, M. et al. Plant thymidine kinase 1: a novel efficient suicide gene for malignant glioma therapy Neuro Oncol., 12 (2010),pp. 549-558
|
[47] |
Knecht, W., Mikkelsen, N.E., Clausen, A.R. et al. Biochem. Biophys. Res. Com., 382 (2009),pp. 430-433
|
[48] |
Knecht, W., Munch-Petersen, B., Piskur, J. J. Mol. Biol., 301 (2000),pp. 827-837
|
[49] |
Knecht, W., Petersen, G.E., Munch-Petersen, B. et al. Deoxyribonucleoside kinases belonging to the thymidine kinase 2 (TK2)-like group vary significantly in substrate specificity, kinetics and feed-back regulation J. Mol. Biol., 315 (2002),pp. 529-540
|
[50] |
Knecht, W., Petersen, G.E., Sandrini, M.P. et al. Mosquito has a single multisubstrate deoxyribonucleoside kinase characterized by unique substrate specificity Nucl. Acids Res., 31 (2003),pp. 1665-1672
|
[51] |
Knecht, W., Rozpedowska, E., Le Breton, C. et al. Gene Ther., 14 (2007),pp. 1278-1286
|
[52] |
Knecht, W., Sandrini, M.P., Johansson, K. et al. A few amino acid substitutions can convert deoxyribonucleoside kinase specificity from pyrimidines to purines EMBO J., 21 (2002),pp. 1873-1880
|
[53] |
Konrad, A., Lai, J., Mutahir, Z. et al. The phylogenetic distribution and evolution of enzymes within the thymidine kinase 2-like gene family in metazoa J. Mol. Evol., 78 (2014),pp. 202-216
|
[54] |
Kosinska, U., Carnrot, C., Eriksson, S. et al. FEBS J., 272 (2005),pp. 6365-6372
|
[55] |
Kosinska, U., Carnrot, C., Sandrini, M.P. et al. FEBS J., 274 (2007),pp. 727-737
|
[56] |
Larsen, N.B., Munch-Petersen, B., Piskur, J. Tomato thymidine kinase is subject to inefficient TTP feedback regulation Nucleosides Nucleotides Nucleic Acids, 33 (2014),pp. 287-290
|
[57] |
Lau, Y.F., Kan, Y.W. Direct isolation of the functional human thymidine kinase gene with a cosmid shuttle vector Proc. Natl. Acad. Sci. USA, 81 (1984),pp. 414-418
|
[58] |
Legent, K., Mas, M., Dutriaux, A. et al. Cell Cycle, 5 (2006),pp. 740-749
|
[59] |
Li, C.L., Lu, C.Y., Ke, P.Y. et al. Perturbation of ATP-induced tetramerization of human cytosolic thymidine kinase by substitution of serine-13 with aspartic acid at the mitotic phosphorylation site Biochem. Biophys. Res. Com., 313 (2004),pp. 587-593
|
[60] |
Loffler, M., Fairbanks, L.D., Zameitat, E. et al. Pyrimidine pathways in health and disease Trends Mol. Med., 11 (2005),pp. 430-437
|
[61] |
Löffler, M., Zameitat, E.
|
[62] |
Ma, S., Qu, W., Mao, L. et al. Oncology Rep., 27 (2012),pp. 1443-1450
|
[63] |
Ma, S., Zhao, L., Zhu, Z. et al. J. Gene Med., 13 (2011),pp. 305-311
|
[64] |
Mazzon, C., Rampazzo, C., Scaini, M.C. et al. Cytosolic and mitochondrial deoxyribonucleotidases: activity with substrate analogs, inhibitors and implications for therapy Biochem. Pharm., 66 (2003),pp. 471-479
|
[65] |
Mikkelsen, N.E., Johansson, K., Karlsson, A. et al. Biochemistry, 42 (2003),pp. 5706-5712
|
[66] |
Mikkelsen, N.E., Munch-Petersen, B., Eklund, H. FEBS J., 275 (2008),pp. 2151-2160
|
[67] |
Moolten, F.L. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy Cancer Res., 46 (1986),pp. 5276-5281
|
[68] |
Moolten, F.L., Wells, J.M. Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors J. Natl. Cancer Inst., 82 (1990),pp. 297-300
|
[69] |
Munch-Petersen, B. Reversible tetramerization of human TK1 to the high catalytic efficient form is induced by pyrophosphate, in addition to tripolyphosphates, or high enzyme concentration FEBS J., 276 (2009),pp. 571-580
|
[70] |
Munch-Petersen, B. Enzymatic regulation of cytosolic thymidine kinase 1 and mitochondrial thymidine kinase 2: a mini review Nucleosides Nucleotides Nucleic Acids, 29 (2010),pp. 363-369
|
[71] |
Munch-Petersen, B., Cloos, L., Tyrsted, G. et al. Diverging substrate specificity of pure human thymidine kinases 1 and 2 against antiviral dideoxynucleosides J. Biol. Chem., 266 (1991),pp. 9032-9038
|
[72] |
Munch-Petersen, B., Knecht, W., Lenz, C. et al. J. Biol. Chem., 275 (2000),pp. 6673-6679
|
[73] |
Munch-Petersen, B., Piskur, J., Sondergaard, L. J. Biol. Chem., 273 (1998),pp. 3926-3931
|
[74] |
Munch-Petersen, B., Piskur, J., Sondergaard, L. Adv. Exp. Med. Biol., 431 (1998),pp. 465-469
|
[75] |
Munch-Petersen, B., Tyrsted, G., Cloos, L. Reversible ATP-dependent transition between two forms of human cytosolic thymidine kinase with different enzymatic properties J. Biol. Chem., 268 (1993),pp. 15621-15625
|
[76] |
Murphy, J.M., Armijo, A.L., Nomme, J. et al. J. Med. Chem., 56 (2013),pp. 6696-6708
|
[77] |
Mutahir, Z.
|
[78] |
Mutahir, Z., Clausen, A.R., Andersson, K.M. et al. Thymidine kinase 1 regulatory fine-tuning through tetramer formation FEBS J., 280 (2013),pp. 1531-1541
|
[79] |
Nasr, F., Bertauche, N., Dufour, M.E. et al. Mol. Gen. Genetics, 244 (1994),pp. 23-32
|
[80] |
Nasu, Y., Saika, T., Ebara, S. et al. Mol. Ther., 15 (2007),pp. 834-840
|
[81] |
Nathanson, D.A., Armijo, A.L., Tom, M. et al. Co-targeting of convergent nucleotide biosynthetic pathways for leukemia eradication J. Exp. Med., 211 (2014),pp. 473-486
|
[82] |
Neschadim, A., Wang, J.C., Lavie, A. et al. Cancer Gene Ther., 19 (2012),pp. 320-327
|
[83] |
Neschadim, A., Wang, J.C., Sato, T. et al. Cell fate control gene therapy based on engineered variants of human deoxycytidine kinase Mol. Ther., 20 (2012),pp. 1002-1013
|
[84] |
Nomme, J., Murphy, J.M., Su, Y. et al. Structural characterization of new deoxycytidine kinase inhibitors rationalizes the affinity-determining moieties of the molecules Acta Crystallogr. D Biol. Crystallogr., 70 (2014),pp. 68-78
|
[85] |
Okazaki, R., Kornberg, A. J. Biol. Chem., 239 (1964),pp. 269-274
|
[86] |
Okazaki, R., Kornberg, A. J. Biol. Chem., 239 (1964),pp. 275-284
|
[87] |
Osaki, T., Tanio, Y., Tachibana, I. et al. Gene therapy for carcinoembryonic antigen-producing human lung cancer cells by cell type-specific expression of herpes simplex virus thymidine kinase gene Cancer Res., 54 (1994),pp. 5258-5261
|
[88] |
Peters, G.J.
|
[89] |
Piskur, J., Sandrini, M.P., Knecht, W. et al. Animal deoxyribonucleoside kinases: ‘forward’ and ‘retrograde’ evolution of their substrate specificity FEBS Lett., 560 (2004),pp. 3-6
|
[90] |
Rainov, N.G. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme Hum. Gene Ther., 11 (2000),pp. 2389-2401
|
[91] |
Rejiba, S., Bigand, C., Parmentier, C. et al. Gemcitabine-based chemogene therapy for pancreatic cancer using Ad-dCK::UMK GDEPT and TS/RR siRNA strategies Neoplasia, 11 (2009),pp. 637-650
|
[92] |
Ribot, E.J., Miraux, S., Konsman, J.P. et al. NMR Biomedicine, 24 (2011),pp. 1361-1368
|
[93] |
Sabini, E., Hazra, S., Konrad, M. et al. Structural basis for activation of the therapeutic L-nucleoside analogs 3TC and troxacitabine by human deoxycytidine kinase Nucl. Acids Res., 35 (2007),pp. 186-192
|
[94] |
Sabini, E., Hazra, S., Konrad, M. et al. Nonenantioselectivity property of human deoxycytidine kinase explained by structures of the enzyme in complex with L- and D-nucleosides J. Med. Chem., 50 (2007),pp. 3004-3014
|
[95] |
Sabini, E., Hazra, S., Konrad, M. et al. Elucidation of different binding modes of purine nucleosides to human deoxycytidine kinase J. Med. Chem., 51 (2008),pp. 4219-4225
|
[96] |
Sabini, E., Hazra, S., Ort, S. et al. Structural basis for substrate promiscuity of dCK J. Mol. Biol., 378 (2008),pp. 607-621
|
[97] |
Sabini, E., Ort, S., Monnerjahn, C. et al. Structure of human dCK suggests strategies to improve anticancer and antiviral therapy Nat. Struc. Biol., 10 (2003),pp. 513-519
|
[98] |
Sandrini, M.P., Clausen, A.R., On, S.L. et al. Nucleoside analogues are activated by bacterial deoxyribonucleoside kinases in a species-specific manner J. Antimicrobial Chemother., 60 (2007),pp. 510-520
|
[99] |
Sandrini, M.P., Piskur, J. Deoxyribonucleoside kinases: two enzyme families catalyze the same reaction Trends Biochem. Sci., 30 (2005),pp. 225-228
|
[100] |
Sandrini, M.P., Soderbom, F., Mikkelsen, N.E. et al. J. Mol. Biol., 369 (2007),pp. 653-664
|
[101] |
Segura-Pena, D., Lichter, J., Trani, M. et al. Quaternary structure change as a mechanism for the regulation of thymidine kinase 1-like enzymes Structure, 15 (2007),pp. 1555-1566
|
[102] |
Segura-Pena, D., Lutz, S., Monnerjahn, C. et al. Binding of ATP to TK1-like enzymes is associated with a conformational change in the quaternary structure J. Mol. Biol., 369 (2007),pp. 129-141
|
[103] |
Serra, I., Conti, S., Piškur, J. et al. Adv. Synth. Catal., 356 (2014),pp. 563-570
|
[104] |
Skovgaard, T., Uhlin, U., Munch-Petersen, B. FEBS J., 279 (2012),pp. 1777-1787
|
[105] |
Soltysova, A., Altanerova, V., Altaner, C. Cancer stem cells Neoplasma, 52 (2005),pp. 435-440
|
[106] |
Soriano, E.V., Clark, V.C., Ealick, S.E. Structures of human deoxycytidine kinase product complexes Acta Crystallogr. D Biol. Crystallogr., 63 (2007),pp. 1201-1207
|
[107] |
Szatmari, T., Huszty, G., Desaknai, S. et al. Adenoviral vector transduction of the human deoxycytidine kinase gene enhances the cytotoxic and radiosensitizing effect of gemcitabine on experimental gliomas Cancer Gene Ther., 15 (2008),pp. 154-164
|
[108] |
Tanaka, H., Arakawa, H., Yamaguchi, T. et al. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage Nature, 404 (2000),pp. 42-49
|
[109] |
Tang, W., He, Y., Zhou, S. et al. J. Exp. Clin. Canc. Res., 28 (2009),p. 155
|
[110] |
Tinta, T., Christiansen, L.S., Konrad, A. et al. Deoxyribonucleoside kinases in two aquatic bacteria with high specificity for thymidine and deoxyadenosine FEMS Microbiol. Lett., 331 (2012),pp. 120-127
|
[111] |
Wang, L., Hellman, U., Eriksson, S. Cloning and expression of human mitochondrial deoxyguanosine kinase cDNA FEBS Lett., 390 (1996),pp. 39-43
|
[112] |
Wang, L., Karlsson, A., Arner, E.S. et al. Substrate specificity of mitochondrial 2'-deoxyguanosine kinase. Efficient phosphorylation of 2-chlorodeoxyadenosine J. Biol. Chem., 268 (1993),pp. 22847-22852
|
[113] |
Wang, L., Munch-Petersen, B., Herrstrom Sjoberg, A. et al. Human thymidine kinase 2: molecular cloning and characterisation of the enzyme activity with antiviral and cytostatic nucleoside substrates FEBS Lett., 443 (1999),pp. 170-174
|
[114] |
Wang, L., Westberg, J., Bolske, G. et al. Novel deoxynucleoside-phosphorylating enzymes in mycoplasmas: evidence for efficient utilization of deoxynucleosides Mol. Microbiol., 42 (2001),pp. 1065-1073
|
[115] |
Welin, M., Kosinska, U., Mikkelsen, N.E. et al. Structures of thymidine kinase 1 of human and mycoplasmic origin Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 17970-17975
|
[116] |
Welin, M., Skovgaard, T., Knecht, W. et al. FEBS J., 272 (2005),pp. 3733-3742
|
[117] |
Welin, M., Wang, L., Eriksson, S. et al. Structure-function analysis of a bacterial deoxyadenosine kinase reveals the basis for substrate specificity J. Mol. Biol., 366 (2007),pp. 1615-1623
|
[118] |
Vernejoul, F., Ghenassia, L., Souque, A. et al. Gene therapy based on gemcitabine chemosensitization suppresses pancreatic tumor growth Mol. Ther., 14 (2006),pp. 758-767
|
[119] |
Vernis, L., Piskur, J., Diffley, J.F. Nucl. Acids Res., 31 (2003),p. e120
|
[120] |
Westphal, M., Yla-Herttuala, S., Martin, J. et al. Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): a randomised, open-label, phase 3 trial Lancet Oncol., 14 (2013),pp. 823-833
|
[121] |
Voges, J., Reszka, R., Gossmann, A. et al. Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma Ann. Neurol., 54 (2003),pp. 479-487
|
[122] |
Xu, F., Li, S., Li, X.L. et al. Phase I and biodistribution study of recombinant adenovirus vector-mediated herpes simplex virus thymidine kinase gene and ganciclovir administration in patients with head and neck cancer and other malignant tumors Cancer Gene Ther., 16 (2009),pp. 723-730
|
[123] |
Young, J.D., Yao, S.Y., Baldwin, J.M. et al. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29 Mol. Aspects Med., 34 (2013),pp. 529-547
|
[124] |
Zhang, N., Dong, X., Sun, Y. et al. Oncology Rep., 29 (2013),pp. 960-966
|
[125] |
Zhang, N., Zhao, L., Ma, S. et al. Int. J. Mol. Med., 30 (2012),pp. 659-665
|
[126] |
Zhang, N.Q., Zhao, L., Ma, S. et al. Asian Pacific J. Cancer Prev., 13 (2012),pp. 2121-2127
|
[127] |
Zhang, Y., Morar, M., Ealick, S.E. Structural biology of the purine biosynthetic pathway Cell. Mol. Life Sci., 65 (2008),pp. 3699-3724
|
[128] |
Zhang, Y., , Ealick, S.E. The structure of human deoxycytidine kinase in complex with clofarabine reveals key interactions for prodrug activation Acta Crystallogr. D Biol. Crystallogr., 62 (2006),pp. 133-139
|
[129] |
Zhu, Z., Ma, S., Zhao, L. et al. Int. J. Oncol., 38 (2011),pp. 745-753
|
[130] |
Zhu, Z., Mao, L., Zhao, L. et al. Cancer Biol. Ther., 11 (2011),pp. 874-882
|