5.9
CiteScore
5.9
Impact Factor
Volume 41 Issue 10
Oct.  2014
Turn off MathJax
Article Contents

Single-Cell Sequencing Technologies: Current and Future

doi: 10.1016/j.jgg.2014.09.005
More Information
  • Corresponding author: E-mail address: sunzs@mail.biols.ac.cn (Zhongsheng Sun)
  • Received Date: 2014-08-08
  • Accepted Date: 2014-09-16
  • Rev Recd Date: 2014-09-01
  • Available Online: 2014-10-18
  • Publish Date: 2014-10-20
  • Intensively developed in the last few years, single-cell sequencing technologies now present numerous advantages over traditional sequencing methods for solving the problems of biological heterogeneity and low quantities of available biological materials. The application of single-cell sequencing technologies has profoundly changed our understanding of a series of biological phenomena, including gene transcription, embryo development, and carcinogenesis. However, before single-cell sequencing technologies can be used extensively, researchers face the serious challenge of overcoming inherent issues of high amplification bias, low accuracy and reproducibility. Here, we simply summarize the techniques used for single-cell isolation, and review the current technologies used in single-cell genomic, transcriptomic, and epigenomic sequencing. We discuss the merits, defects, and scope of application of single-cell sequencing technologies and then speculate on the direction of future developments.
  • loading
  • [1]
    Adereth, Y., Dammai, V., Kose, N. et al. RNA-dependent integrin alpha3 protein localization regulated by the muscleblind-like protein MLP1 Nat. Cell Biol., 7 (2005),pp. 1240-1247
    [2]
    Adli, M., Bernstein, B.E. Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq Nat. Protoc., 6 (2011),pp. 1656-1668
    [3]
    Baslan, T., Kendall, J., Rodgers, L. et al. Genome-wide copy number analysis of single cells Nat. Protoc., 7 (2012),pp. 1024-1041
    [4]
    Bassing, C.H., Swat, W., Alt, F.W. The mechanism and regulation of chromosomal V(D)J recombination Cell, 109 (2002),pp. S45-S55
    [5]
    Bengtsson, M., Stahlberg, A., Rorsman, P. et al. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels Genome Res., 15 (2005),pp. 1388-1392
    [6]
    Bhattacharyya, S., Yu, Y.T., Suzuki, M. et al. Genome-wide hydroxymethylation tested using the HELP-GT assay shows redistribution in cancer Nucleic Acids Res., 41 (2013),p. e157
    [7]
    Blanco, L., Bernad, A., Lazaro, J.M. et al. Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication J. Biol. Chem., 264 (1989),pp. 8935-8940
    [8]
    Booth, M.J., Branco, M.R., Ficz, G. et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution Science, 336 (2012),pp. 934-937
    [9]
    Brook, J.D., Mccurrach, M.E., Harley, H.G. et al. Molecular-basis of myotonic-dystrophy-expansion of a trinucleotide (Ctg) repeat at the 3′ end of a transcript encoding a protein-kinase family member Cell, 68 (1992),pp. 799-808
    [10]
    Cann, G.M., Gulzar, Z.G., Cooper, S. et al. mRNA-seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer PLoS ONE, 7 (2012),p. e49144
    [11]
    Casbon, J.A., Osborne, R.J., Brenner, S. et al. A method for counting PCR template molecules with application to next-generation sequencing Nucleic Acids Res., 39 (2011),p. e81
    [12]
    Cheung, V.G., Nelson, S.F. Whole genome amplification using a degenerate oligonucleotide primer allows hundreds of genotypes to be performed on less than one nanogram of genomic DNA Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 14676-14679
    [13]
    Cho, B.S., Schuster, T.G., Zhu, X. et al. Passively driven integrated microfluidic system for separation of motile sperm Anal. Chem., 75 (2003),pp. 1671-1675
    [14]
    Choy, M.K., Movassagh, M., Goh, H.G. et al. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated BMC Genomics, 11 (2010),p. 519
    [15]
    Citri, A., Pang, Z.P., Sudhof, T.C. et al. Comprehensive qPCR profiling of gene expression in single neuronal cells Nat. Protoc., 7 (2012),pp. 118-127
    [16]
    Cohen, A.A., Geva-Zatorsky, N., Eden, E. et al. Dynamic proteomics of individual cancer cells in response to a drug Science, 322 (2008),pp. 1511-1516
    [17]
    Cristofanilli, M., Budd, G.T., Ellis, M.J. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer N. Engl. J. Med., 351 (2004),pp. 781-791
    [18]
    Dean, F.B., Hosono, S., Fang, L.H. et al. Comprehensive human genome amplification using multiple displacement amplification Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 5261-5266
    [19]
    Dean, F.B., Nelson, J.R., Giesler, T.L. et al. Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply-primed rolling circle amplification Genome Res., 11 (2001),pp. 1095-1099
    [20]
    Deaton, A.M., Bird, A. CpG islands and the regulation of transcription Genes Dev., 25 (2011),pp. 1010-1022
    [21]
    Deng, Q., Ramskold, D., Reinius, B. et al. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells Science, 343 (2014),pp. 193-196
    [22]
    Ding, L., Ley, T.J., Larson, D.E. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing Nature, 481 (2012),pp. 506-510
    [23]
    Eberwine, J., Yeh, H., Miyashiro, K. et al. Analysis of gene expression in single live neurons Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 3010-3014
    [24]
    Echols, H., Goodman, M.F. Fidelity mechanisms in DNA replication Annu. Rev. Biochem., 60 (1991),pp. 477-511
    [25]
    Eckert, K.A., Kunkel, T.A. DNA polymerase fidelity and the polymerase chain reaction PCR Methods Appl., 1 (1991),pp. 17-24
    [26]
    Ephrussi, A., Dickinson, L.K., Lehmann, R. Oskar organizes the germ plasm and directs localization of the posterior determinant nanos Cell, 66 (1991),pp. 37-50
    [27]
    Espina, V., Wulfkuhle, J.D., Calvert, V.S. et al. Laser-capture microdissection Nat. Protoc., 1 (2006),pp. 586-603
    [28]
    Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps Nat. Rev. Genet., 8 (2007),pp. 286-298
    [29]
    Flusberg, B.A., Webster, D.R., Lee, J.H. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing Nat. Methods, 7 (2010),pp. 461-465
    [30]
    Fujimoto, A., Totoki, Y., Abe, T. et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators Nat. Genet., 44 (2012),pp. 760-764
    [31]
    Furey, T.S. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions Nat. Rev. Genet., 13 (2012),pp. 840-852
    [32]
    Gaudet, F., Hodgson, J.G., Eden, A. et al. Induction of tumors in mice by genomic hypomethylation Science, 300 (2003),pp. 489-492
    [33]
    Gavis, E.R., Lehmann, R. Localization of nanos RNA controls embryonic polarity Cell, 71 (1992),pp. 301-313
    [34]
    Goetz, J.J., Trimarchi, J.M. Transcriptome sequencing of single cells with Smart-Seq Nat. Biotechnol., 30 (2012),pp. 763-765
    [35]
    Gole, J., Gore, A., Richards, A. et al. Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells Nat. Biotechnol., 31 (2013),pp. 1126-1132
    [36]
    Guo, H., Zhu, P., Wu, X. et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing Genome Res., 23 (2013),pp. 2126-2135
    [37]
    Guo, H., Zhu, P., Yan, L. et al. The DNA methylation landscape of human early embryos Nature, 511 (2014),pp. 606-610
    [38]
    Guo, J.U., Su, Y., Zhong, C. et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain Cell, 145 (2011),pp. 423-434
    [39]
    Hashimshony, T., Wagner, F., Sher, N. et al. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification Cell Rep., 2 (2012),pp. 666-673
    [40]
    Hockner, M., Erdel, M., Spreiz, A. et al. Whole genome amplification from microdissected chromosomes Cytogenet. Genome Res., 125 (2009),pp. 98-102
    [41]
    Hosono, S., Faruqi, A.F., Dean, F.B. et al. Unbiased whole-genome amplification directly from clinical samples Genome Res., 13 (2003),pp. 954-964
    [42]
    Hou, Y., Fan, W., Yan, L. et al. Genome analyses of single human oocytes Cell, 155 (2013),pp. 1492-1506
    [43]
    Hou, Y., Song, L., Zhu, P. et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm Cell, 148 (2012),pp. 873-885
    [44]
    Hughes, J.R., Bullock, S.L., Ish-Horowicz, D. Curr. Biol., 14 (2004),pp. 1950-1956
    [45]
    Hussein, S.M., Batada, N.N., Vuoristo, S. et al. Copy number variation and selection during reprogramming to pluripotency Nature, 471 (2011),pp. 58-62
    [46]
    Inoue, J., Shigemori, Y., Mikawa, T. Nucleic Acids Res., 34 (2006),p. e69
    [47]
    Islam, S., Kjallquist, U., Moliner, A. et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq Genome Res., 21 (2011),pp. 1160-1167
    [48]
    Islam, S., Zeisel, A., Joost, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers Nat. Methods, 11 (2014),pp. 163-166
    [49]
    Jaitin, D.A., Kenigsberg, E., Keren-Shaul, H. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types Science, 343 (2014),pp. 776-779
    [50]
    Jones, P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond Nat. Rev. Genet., 13 (2012),pp. 484-492
    [51]
    Kellogg, R.A., Gomez-Sjoberg, R., Leyrat, A.A. et al. High-throughput microfluidic single-cell analysis pipeline for studies of signaling dynamics Nat. Protoc., 9 (2014),pp. 1713-1726
    [52]
    Kivioja, T., Vaharautio, A., Karlsson, K. et al. Counting absolute numbers of molecules using unique molecular identifiers Nat. Methods, 9 (2012),pp. 72-74
    [53]
    Ko, M., Huang, Y., Jankowska, A.M. et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2 Nature, 468 (2010),pp. 839-843
    [54]
    Koh, K.P., Yabuuchi, A., Rao, S. et al. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells Cell Stem Cell, 8 (2011),pp. 200-213
    [55]
    Koob, M.D., Moseley, M.L., Schut, L.J. et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8) Nat. Genet., 21 (1999),pp. 379-384
    [56]
    Kurimoto, K., Yabuta, Y., Ohinata, Y. et al. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis Nucleic Acids Res., 34 (2006),p. e42
    [57]
    Kurimoto, K., Yabuta, Y., Ohinata, Y. et al. Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis Nat. Protoc., 2 (2007),pp. 739-752
    [58]
    Lasken, R.S. Genomic sequencing of uncultured microorganisms from single cells Nat. Rev. Microbiol., 10 (2012),pp. 631-640
    [59]
    Lasken, R.S. Single-cell sequencing in its prime Nat. Biotechnol., 31 (2013),pp. 211-212
    [60]
    Laszlo, A.H., Derrington, I.M., Brinkerhoff, H. et al. Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 18904-18909
    [61]
    Laurent, L.C., Ulitsky, I., Slavin, I. et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture Cell Stem Cell, 8 (2011),pp. 106-118
    [62]
    Lawrence, J.B., Singer, R.H. Intracellular-localization of messenger RNAs for cytoskeletal proteins Cell, 45 (1986),pp. 407-415
    [63]
    Lecuyer, E., Yoshida, H., Parthasarathy, N. et al. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function Cell, 131 (2007),pp. 174-187
    [64]
    Lee, J.H., Daugharthy, E.R., Scheiman, J. et al. Science, 343 (2014),pp. 1360-1363
    [65]
    Ling, H.Q., Zhao, S., Liu, D. et al. Nature, 496 (2013),pp. 87-90
    [66]
    Lorthongpanich, C., Cheow, L.F., Balu, S. et al. Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos Science, 341 (2013),pp. 1110-1112
    [67]
    Lu, S., Zong, C., Fan, W. et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing Science, 338 (2012),pp. 1627-1630
    [68]
    Macaulay, I.C., Voet, T. Single cell genomics: advances and future perspectives PLoS Genet., 10 (2014),p. e1004126
    [69]
    Marcy, Y., Ishoey, T., Lasken, R.S. et al. Nanoliter reactors improve multiple displacement amplification of genomes from single cells PLoS Genet., 3 (2007),pp. 1702-1708
    [70]
    Marcy, Y., Ouverney, C., Bik, E.M. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 11889-11894
    [71]
    Marshall, I.P.G., Blainey, P.C., Spormann, A.M. et al. Appl. Environ. Microbiol., 78 (2012),pp. 8555-8563
    [72]
    Maryanski, J.L., Jongeneel, C.V., Bucher, P. et al. Immunity, 4 (1996),pp. 47-55
    [73]
    McConnell, M.J., Lindberg, M.R., Brennand, K.J. et al. Mosaic copy number variation in human neurons Science, 342 (2013),pp. 632-637
    [74]
    Meissner, A., Gnirke, A., Bell, G.W. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis Nucleic Acids Res., 33 (2005),pp. 5868-5877
    [75]
    Michaelson, J.J., Shi, Y., Gujral, M. et al. Cell, 151 (2012),pp. 1431-1442
    [76]
    Mortazavi, A., Williams, B.A., McCue, K. et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq Nat. Methods, 5 (2008),pp. 621-628
    [77]
    Myers, S., Bottolo, L., Freeman, C. et al. A fine-scale map of recombination rates and hotspots across the human genome Science, 310 (2005),pp. 321-324
    [78]
    Nan, X., Ng, H.H., Johnson, C.A. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex Nature, 393 (1998),pp. 386-389
    [79]
    Navin, N., Kendall, J., Troge, J. et al. Tumour evolution inferred by single-cell sequencing Nature, 472 (2011),pp. 90-94
    [80]
    Ni, X.H., Zhuo, M.L., Su, Z. et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 21083-21088
    [81]
    Obokata, H., Sasai, Y., Niwa, H. et al. Bidirectional developmental potential in reprogrammed cells with acquired pluripotency Nature, 505 (2014),pp. 676-680
    [82]
    Ozsolak, F., Platt, A.R., Jones, D.R. et al. Direct RNA sequencing Nature, 461 (2009),pp. 814-818
    [83]
    Patel, A.P., Tirosh, I., Trombetta, J.J. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma Science, 344 (2014),pp. 1396-1401
    [84]
    Paterlini-Brechot, P., Benali, N.L. Circulating tumor cells (CTC) detection: clinical impact and future directions Cancer Lett., 253 (2007),pp. 180-204
    [85]
    Peach, G., Kim, C., Zacharakis, E. et al. Prognostic significance of circulating tumour cells following surgical resection of colorectal cancers: a systematic review Br. J. Cancer, 102 (2010),pp. 1327-1334
    [86]
    Petersen, M., Wengel, J. LNA: a versatile tool for therapeutics and genomics Trends Biotechnol., 21 (2003),pp. 74-81
    [87]
    Petronczki, M., Siomos, M.F., Nasmyth, K. Un menage a quatre: the molecular biology of chromosome segregation in meiosis Cell, 112 (2003),pp. 423-440
    [88]
    Picelli, S., Bjorklund, A.K., Faridani, O.R. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells Nat. Methods, 10 (2013),pp. 1096-1098
    [89]
    Picelli, S., Faridani, O.R., Bjorklund, A.K. et al. Full-length RNA-seq from single cells using Smart-seq2 Nat. Protoc., 9 (2014),pp. 171-181
    [90]
    Potter, N.E., Ermini, L., Papaemmanuil, E. et al. Single-cell mutational profiling and clonal phylogeny in cancer Genome Res., 23 (2013),pp. 2115-2125
    [91]
    Puente, X.S., Pinyol, M., Quesada, V. et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia Nature, 475 (2011),pp. 101-105
    [92]
    Raghunathan, A., , Bornarth, C.J., Song, W. et al. Genomic DNA amplification from a single bacterium Appl. Environ. Microbiol., 71 (2005),pp. 3342-3347
    [93]
    Raj, A., van Oudenaarden, A. Single-molecule approaches to stochastic gene expression Annu. Rev. Biophys., 38 (2009),pp. 255-270
    [94]
    Ramskold, D., Luo, S., Wang, Y.C. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells Nat. Biotechnol., 30 (2012),pp. 777-782
    [95]
    Rappe, M.S., Giovannoni, S.J. The uncultured microbial majority Annu. Rev. Microbiol., 57 (2003),pp. 369-394
    [96]
    Ren, S., Peng, Z., Mao, J.H. et al. RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings Cell Res., 22 (2012),pp. 806-821
    [97]
    Roy, R.S., Price, D.C., Schliep, A. et al. Single cell genome analysis of an uncultured heterotrophic stramenopile Sci. Rep., 4 (2014)
    [98]
    Saliba, A.E., Westermann, A.J., Gorski, S.A. et al. Single-cell RNA-seq: advances and future challenges Nucleic Acids Res., 42 (2014),pp. 8845-8860
    [99]
    Sanders, S.J., Murtha, M.T., Gupta, A.R. et al. Nature, 485 (2012),pp. 237-241
    [100]
    Sasagawa, Y., Nikaido, I., Hayashi, T. et al. Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity Genome Biol., 14 (2013),p. R31
    [101]
    Schadt, E.E., Banerjee, O., Fang, G. et al. Modeling kinetic rate variation in third generation DNA sequencing data to detect putative modifications to DNA bases Genome Res., 23 (2013),pp. 129-141
    [102]
    Schadt, E.E., Turner, S., Kasarskis, A. A window into third-generation sequencing Hum. Mol. Genet., 19 (2010),pp. R227-R240
    [103]
    Schatz, D.G., Swanson, P.C. V(D)J recombination: mechanisms of initiation Annu. Rev. Genet., 45 (2011),pp. 167-202
    [104]
    Schmutz, J., Cannon, S.B., Schlueter, J. et al. Genome sequence of the palaeopolyploid soybean Nature, 463 (2010),pp. 178-183
    [105]
    Shalek, A.K., Satija, R., Adiconis, X. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells Nature, 498 (2013),pp. 236-240
    [106]
    Shalek, A.K., Satija, R., Shuga, J. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation Nature, 510 (2014),pp. 363-369
    [107]
    Shankaranarayanan, P., Mendoza-Parra, M.A., Walia, M. et al. Single-tube linear DNA amplification (LinDA) for robust ChIP-seq Nat. Methods, 8 (2011),pp. 565-567
    [108]
    Shapiro, E., Biezuner, T., Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science Nat. Rev. Genet., 14 (2013),pp. 618-630
    [109]
    Shiroguchi, K., Jia, T.Z., Sims, P.A. et al. Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 1347-1352
    [110]
    Siebert, P.D., Chenchik, A., Kellogg, D.E. et al. An improved PCR method for walking in uncloned genomic DNA Nucleic Acids Res., 23 (1995),pp. 1087-1088
    [111]
    Simmonds, A.J., dos Santos, G., Livne-Bar, I. et al. Apical localization of wingless transcripts is required for wingless signaling Cell, 105 (2001),pp. 197-207
    [112]
    Smagulova, F., Gregoretti, I.V., Brick, K. et al. Genome-wide analysis reveals novel molecular features of mouse recombination hotspots Nature, 472 (2011),pp. 375-378
    [113]
    Smallwood, S.A., Lee, H.J., Angermueller, C. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity Nat. Methods, 11 (2014),pp. 817-820
    [114]
    Spits, C., Le Caignec, C., De Rycke, M. et al. Whole-genome multiple displacement amplification from single cells Nat. Protoc., 1 (2006),pp. 1965-1970
    [115]
    Stein, R., Razin, A., Cedar, H. Proc. Natl. Acad. Sci. USA, 79 (1982),pp. 3418-3422
    [116]
    Sultan, M., Schulz, M.H., Richard, H. et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome Science, 321 (2008),pp. 956-960
    [117]
    Szyf, M. DNA methylation, behavior and early life adversity J. Genet. Genomics, 40 (2013),pp. 331-338
    [118]
    Takizawa, P.A., Sil, A., Swedlow, J.R. et al. Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast Nature, 389 (1997),pp. 90-93
    [119]
    Tang, F., Barbacioru, C., Nordman, E. et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell Nat. Protoc., 5 (2010),pp. 516-535
    [120]
    Tang, F., Barbacioru, C., Wang, Y. et al. mRNA-Seq whole-transcriptome analysis of a single cell Nat. Methods, 6 (2009),pp. 377-382
    [121]
    Taniguchi, K., Kajiyama, T., Kambara, H. Quantitative analysis of gene expression in a single cell by qPCR Nat. Methods, 6 (2009),pp. 503-506
    [122]
    Telenius, H., Carter, N.P., Bebb, C.E. et al. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer Genomics, 13 (1992),pp. 718-725
    [123]
    Treutlein, B., Brownfield, D.G., Wu, A.R. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq Nature, 509 (2014),pp. 371-375
    [124]
    Troutt, A.B., McHeyzer-Williams, M.G., Pulendran, B. et al. Ligation-anchored PCR: a simple amplification technique with single-sided specificity Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 9823-9825
    [125]
    van Arensbergen, J., Garcia-Hurtado, J., Moran, I. et al. Derepression of polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program Genome Res., 20 (2010),pp. 722-732
    [126]
    Vester, B., Wengel, J. LNA (Locked nucleic acid): high-affinity targeting of complementary RNA and DNA Biochemistry, 43 (2004),pp. 13233-13241
    [127]
    Walsh, C.P., Chaillet, J.R., Bestor, T.H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation Nat. Genet., 20 (1998),pp. 116-117
    [128]
    Walters, E.M., Clark, S.G., Beebe, D.J. et al. Mammalian embryo culture in a microfluidic device Methods Mol. Biol., 254 (2004),pp. 375-382
    [129]
    Wang, J., Fan, H.C., Behr, B. et al. Cell, 150 (2012),pp. 402-412
    [130]
    Wang, Y., Wang, Y., Liu, Q. et al. Comparative RNA-seq analysis reveals potential mechanisms mediating the conversion to androgen independence in an LNCaP progression cell model Cancer Lett., 342 (2014),pp. 130-138
    [131]
    Wang, Y., Waters, J., Leung, M.L. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing Nature, 512 (2014),pp. 155-160
    [132]
    Xu, X., Hou, Y., Yin, X. et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor Cell, 148 (2012),pp. 886-895
    [133]
    Xu, Y., Wu, F., Tan, L. et al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells Mol. Cell, 42 (2011),pp. 451-464
    [134]
    Xue, Z.G., Huang, K., Cai, C.C. et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing Nature, 500 (2013),pp. 593-597
    [135]
    Yamaguchi, S., Hong, K., Liu, R. et al. Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming Cell Res., 23 (2013),pp. 329-339
    [136]
    Yan, L., Yang, M., Guo, H. et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells Nat. Struct. Mol. Biol., 20 (2013),pp. 1131-1139
    [137]
    Yang, H., Liu, Y., Bai, F. et al. Oncogene, 32 (2013),pp. 663-669
    [138]
    Yoon, H.S., Price, D.C., Stepanauskas, R. et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists Science, 332 (2011),pp. 714-717
    [139]
    Yu, M., Hon, G.C., Szulwach, K.E. et al. Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine Nat. Protoc., 7 (2012),pp. 2159-2170
    [140]
    Yu, M., Hon, G.C., Szulwach, K.E. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome Cell, 149 (2012),pp. 1368-1380
    [141]
    Zhang, K., Martiny, A.C., Reppas, N.B. et al. Sequencing genomes from single cells by polymerase cloning Nat. Biotechnol., 24 (2006),pp. 680-686
    [142]
    Zhang, L., Cui, X., Schmitt, K. et al. Whole genome amplification from a single cell: implications for genetic analysis Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 5847-5851
    [143]
    Zhu, Y.Y., Machleder, E.M., Chenchik, A. et al. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction Biotechniques, 30 (2001),pp. 892-897
    [144]
    Zong, C., Lu, S., Chapman, A.R. et al. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell Science, 338 (2012),pp. 1622-1626
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (108) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return