[1] |
Abramov, V.M., Khlebnikov, V.S., Vasiliev, A.M. et al. J. Proteome Res., 6 (2007),pp. 2222-2231
|
[2] |
Bergsbaken, T., Cookson, B.T. Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis PLoS Pathog., 3 (2007),p. e161
|
[3] |
Bergsbaken, T., Cookson, B.T. Innate immune response during Yersinia infection: critical modulation of cell death mechanisms through phagocyte activation J. Leukoc. Biol., 86 (2009),pp. 1153-1158
|
[4] |
Boldrick, J.C., Alizadeh, A.A., Diehn, M. et al. Stereotyped and specific gene expression programs in human innate immune responses to bacteria Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 972-977
|
[5] |
Chiliveru, S., Birkelund, S., Paludan, S.R. Induction of interferon-stimulated genes by Chlamydia pneumoniae in fibroblasts is mediated by intracellular nucleotide-sensing receptors PLoS ONE, 5 (2010),p. e10005
|
[6] |
Chiu, Y.H., Macmillan, J.B., Chen, Z.J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway Cell, 138 (2009),pp. 576-591
|
[7] |
Comer, J.E., Sturdevant, D.E., Carmody, A.B. et al. Infect. Immun., 78 (2010),pp. 5086-5098
|
[8] |
Cornelis, G.R., Boland, A., Boyd, A.P. et al. The virulence plasmid of Yersinia, an antihost genome Microbiol. Mol. Biol. Rev., 62 (1998),pp. 1315-1352
|
[9] |
Decker, T., Muller, M., Stockinger, S. The yin and yang of type I interferon activity in bacterial infection Nat. Rev. Immunol., 5 (2005),pp. 675-687
|
[10] |
Depaolo, R.W., Tang, F., Kim, I. et al. Toll-like receptor 6 drives differentiation of tolerogenic dendritic cells and contributes to LcrV-mediated plague pathogenesis Cell Host Microbe, 4 (2008),pp. 350-361
|
[11] |
Duewell, P., Kono, H., Rayner, K.J. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals Nature, 464 (2010),pp. 1357-1361
|
[12] |
Durfee, L.A., Lyon, N., Seo, K. et al. The ISG15 conjugation system broadly targets newly synthesized proteins: implications for the antiviral function of ISG15 Mol. Cell, 38 (2010),pp. 722-732
|
[13] |
Galindo, C.L., Moen, S.T., Kozlova, E.V. et al. Comp. Funct. Genomics, 2009 (2009),p. 914762
|
[14] |
Gordon, S. Alternative activation of macrophages Nat. Rev. Immunol., 3 (2003),pp. 23-35
|
[15] |
Gordon, S., Martinez, F.O. Alternative activation of macrophages: mechanism and functions Immunity, 32 (2010),pp. 593-604
|
[16] |
Grayson, T.H., Cooper, L.F., Wrathmell, A.B. et al. Host responses to Renibacterium salmoninarum and specific components of the pathogen reveal the mechanisms of immune suppression and activation Immunology, 106 (2002),pp. 273-283
|
[17] |
Guinet, F., Ave, P., Jones, L. et al. PLoS ONE, 3 (2008),p. e1688
|
[18] |
Han, Y., Zhou, D., Pang, X. et al. Microbiol. Immunol., 48 (2004),pp. 791-805
|
[19] |
Huang da, W., Sherman, B.T., Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources Nat. Protoc, 4 (2009),pp. 44-57
|
[20] |
Huang, Q., Liu, D., Majewski, P. et al. The plasticity of dendritic cell responses to pathogens and their components Science, 294 (2001),pp. 870-875
|
[21] |
Imaizumi, T., Sashinami, H., Mori, F. et al. Listeria monocytogenes induces the expression of retinoic acid-inducible gene-I Microbiol. Immunol., 50 (2006),pp. 811-815
|
[22] |
Jenner, R.G., Young, R.A. Insights into host responses against pathogens from transcriptional profiling Nat. Rev. Microbiol., 3 (2005),pp. 281-294
|
[23] |
Kanneganti, T.D., Lamkanfi, M., Nunez, G. Intracellular NOD-like receptors in host defense and disease Immunity, 27 (2007),pp. 549-559
|
[24] |
Kato, H., Takeuchi, O., Sato, S. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses Nature, 441 (2006),pp. 101-105
|
[25] |
Kawahara, K., Tsukano, H., Watanabe, H. et al. Infect. Immun., 70 (2002),pp. 4092-4098
|
[26] |
Kobayashi, S.D., Voyich, J.M., Buhl, C.L. et al. Global changes in gene expression by human polymorphonuclear leukocytes during receptor-mediated phagocytosis: cell fate is regulated at the level of gene expression Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 6901-6906
|
[27] |
Kobayashi, S.D., Braughton, K.R., Whitney, A.R. et al. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 10948-10953
|
[28] |
Kong, L., Sun, L., Zhang, H. et al. An essential role for RIG-I in toll-like receptor-stimulated phagocytosis Cell Host Microbe, 6 (2009),pp. 150-161
|
[29] |
Korhonen, T.K., Haiko, J., Laakkonen, L. et al. Front. Cell Infect. Microbiol., 3 (2013),p. 35
|
[30] |
Krishnan, J., Selvarajoo, K., Tsuchiya, M. et al. Toll-like receptor signal transduction Exp. Mol. Med., 39 (2007),pp. 421-438
|
[31] |
Kukkonen, M., Lahteenmaki, K., Suomalainen, M. et al. Mol. Microbiol., 40 (2001),pp. 1097-1111
|
[32] |
Lathem, W.W., Crosby, S.D., Miller, V.L. et al. Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 17786-17791
|
[33] |
Lathem, W.W., Price, P.A., Miller, V.L. et al. A plasminogen-activating protease specifically controls the development of primary pneumonic plague Science, 315 (2007),pp. 509-513
|
[34] |
Leary, S.E., Griffin, K.F., Galyov, E.E. et al. Yersinia outer proteins (YOPS) E, K and N are antigenic but non-protective compared to V antigen, in a murine model of bubonic plague Microb. Pathog., 26 (1999),pp. 159-169
|
[35] |
Li, R., Yu, C., Li, Y. et al. SOAP2: an improved ultrafast tool for short read alignment Bioinformatics, 25 (2009),pp. 1966-1967
|
[36] |
Li, X.D., Chiu, Y.H., Ismail, A.S. et al. Mitochondrial antiviral signaling protein (MAVS) monitors commensal bacteria and induces an immune response that prevents experimental colitis Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 17390-17395
|
[37] |
Lin, J.S., Szaba, F.M., Kummer, L.W. et al. J. Immunol., 187 (2011),pp. 897-904
|
[38] |
Liu, H., Wang, H., Qiu, J. et al. J. Basic Microbiol., 49 (2009),pp. 92-99
|
[39] |
Lukaszewski, R.A., Kenny, D.J., Taylor, R. et al. Infect. Immun., 73 (2005),pp. 7142-7150
|
[40] |
Monack, D.M., Mecsas, J., Ghori, N. et al. Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death Proc. Natl. Acad. Sci. USA, 94 (1997),pp. 10385-10390
|
[41] |
Monack, D.M., Mecsas, J., Bouley, D. et al. Yersinia-induced apoptosis in vivo aids in the establishment of a systemic infection of mice J. Exp. Med., 188 (1998),pp. 2127-2137
|
[42] |
Mortazavi, A., Williams, B.A., McCue, K. et al. Mapping and quantifying mammalian transcriptomes by RNA-seq Nat. Meth., 5 (2008),pp. 621-628
|
[43] |
Mukherjee, S., Keitany, G., Li, Y. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation Science, 312 (2006),pp. 1211-1214
|
[44] |
Musson, J.A., Morton, M., Walker, N. et al. J. Biol. Chem., 281 (2006),pp. 26129-26135
|
[45] |
Nakajima, R., Brubaker, R.R. Infect. Immun., 61 (1993),pp. 23-31
|
[46] |
Nau, G.J., Richmond, J.F., Schlesinger, A. et al. Human macrophage activation programs induced by bacterial pathogens Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 1503-1508
|
[47] |
Nguyen, H., Hiscott, J., Pitha, P.M. The growing family of interferon regulatory factors Cytokine Growth Factor Rev., 8 (1997),pp. 293-312
|
[48] |
Opitz, B., Vinzing, M., van Laak, V. et al. J. Biol. Chem., 281 (2006),pp. 36173-36179
|
[49] |
Parent, M.A., Wilhelm, L.B., Kummer, L.W. et al. Infect. Immun., 74 (2006),pp. 3381-3386
|
[50] |
Patel, A.A., Lee-Lewis, H., Hughes-Hanks, J. et al. Opposing roles for interferon regulatory factor-3 (IRF-3) and type I interferon signaling during plague PLoS Pathog., 8 (2012),p. e1002817
|
[51] |
Pereira, M.S., Morgantetti, G.F., Massis, L.M. et al. J. Immunol., 187 (2011),pp. 6447-6455
|
[52] |
Perry, R.D., Fetherston, J.D. Clin. Microbiol. Rev., 10 (1997),pp. 35-66
|
[53] |
Philipovskiy, A.V., Cowan, C., Wulff-Strobel, C.R. et al. Infect. Immun., 73 (2005),pp. 1532-1542
|
[54] |
Pouliot, K., Pan, N., Wang, S. et al. Infect. Immun., 75 (2007),pp. 3571-3580
|
[55] |
Price, P.A., Jin, J., Goldman, W.E. Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 3083-3088
|
[56] |
Rogers, J.V., Choi, Y.W., Giannunzio, L.F. et al. Microb. Pathog., 43 (2007),pp. 67-77
|
[57] |
Satoh, T., Kato, H., Kumagai, Y. et al. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 1512-1517
|
[58] |
Schafer, S.L., Lin, R., Moore, P.A. et al. Regulation of type I interferon gene expression by interferon regulatory factor-3 J. Biol. Chem., 273 (1998),pp. 2714-2720
|
[59] |
Schroder, K., Tschopp, J. The inflammasomes Cell, 140 (2010),pp. 821-832
|
[60] |
Sharma, R.K., Sodhi, A., Batra, H.V. Mol. Immunol., 42 (2005),pp. 695-701
|
[61] |
Shim, H.K., Musson, J.A., Harper, H.M. et al. Immunology, 119 (2006),pp. 385-392
|
[62] |
Sing, A., Reithmeier-Rost, D., Granfors, K. et al. A hypervariable N-terminal region of Yersinia LcrV determines Toll-like receptor 2-mediated IL-10 induction and mouse virulence Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 16049-16054
|
[63] |
Sun, Q., Sun, L., Liu, H.H. et al. The specific and essential role of MAVS in antiviral innate immune responses Immunity, 24 (2006),pp. 633-642
|
[64] |
Takaoka, A., Wang, Z., Choi, M.K. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response Nature, 448 (2007),pp. 501-505
|
[65] |
Takeuchi, O., Akira, S. Innate immunity to virus infection Immunol. Rev., 227 (2009),pp. 75-86
|
[66] |
Unterholzner, L., Keating, S.E., Baran, M. et al. IFI16 is an innate immune sensor for intracellular DNA Nat. Immunol., 11 (2010),pp. 997-1004
|
[67] |
von Delwig, A., Musson, J.A., Shim, H.K. et al. Distribution of productive antigen-processing activity for MHC class II presentation in macrophages Scand J. Immunol., 62 (2005),pp. 243-250
|
[68] |
Waddell, S.J., Butcher, P.D., Stoker, N.G. RNA profiling in host-pathogen interactions Curr. Opin. Microbiol., 10 (2007),pp. 297-302
|
[69] |
Wang, Z., Gerstein, M., Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics Nat. Rev. Genet., 10 (2009),pp. 57-63
|
[70] |
West, A.P., Koblansky, A.A., Ghosh, S. Recognition and signaling by toll-like receptors Annu. Rev. Cell. Dev. Biol., 22 (2006),pp. 409-437
|
[71] |
Yamanaka, H., Hoyt, T., Yang, X. et al. Infect. Immun., 76 (2008),pp. 4564-4573
|
[72] |
Yoneyama, M., Fujita, T. RNA recognition and signal transduction by RIG-I-like receptors Immunol. Rev., 227 (2009),pp. 54-65
|
[73] |
Yoneyama, M., Kikuchi, M., Natsukawa, T. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses Nat. Immunol., 5 (2004),pp. 730-737
|
[74] |
Zhang, X., Wu, J., Du, F. et al. The cytosolic DNA Sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop Cell Rep., 6 (2014),pp. 421-430
|
[75] |
Zhang, Y., Bliska, J.B. Role of macrophage apoptosis in the pathogenesis of Yersinia Curr. Top. Microbiol. Immunol., 289 (2005),pp. 151-173
|
[76] |
Zhang, Y., Mena, P., Romanov, G. et al. Infect. Immun., 80 (2012),pp. 206-214
|
[77] |
Zhao, C., Denison, C., Huibregtse, J.M. et al. Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 10200-10205
|
[78] |
Zhao, Y., Yang, J., Shi, J. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus Nature, 477 (2011),pp. 596-600
|
[79] |
Zheng, Y., Lilo, S., Mena, P. et al. YopJ-induced caspase-1 activation in Yersinia-infected macrophages: independent of apoptosis, linked to necrosis, dispensable for innate host defense PLoS ONE, 7 (2012),p. e36019
|
[80] |
Zheng, Y., Lilo, S., Brodsky, I.E. et al. A Yersinia effector with enhanced inhibitory activity on the NF-kappaB pathway activates the NLRP3/ASC/caspase-1 inflammasome in macrophages PLoS Pathog., 7 (2011),p. e1002026
|
[81] |
Zhou, H., Monack, D.M., Kayagaki, N. et al. Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-kappa B activation J. Exp. Med., 202 (2005),pp. 1327-1332
|