5.9
CiteScore
5.9
Impact Factor
Volume 41 Issue 7
Jul.  2014
Turn off MathJax
Article Contents

A Matrilineal Genetic Legacy from the Last Glacial Maximum Confers Susceptibility to Schizophrenia in Han Chinese

doi: 10.1016/j.jgg.2014.05.004
More Information
  • Corresponding author: E-mail address: chenxghn@gmail.com (Xiaogang Chen); E-mail address: yaoyg@mail.kiz.ac.cn (Yong-Gang Yao)
  • Received Date: 2014-02-28
  • Accepted Date: 2014-05-21
  • Rev Recd Date: 2014-05-16
  • Available Online: 2014-06-02
  • Publish Date: 2014-07-20
  • Mitochondrial dysfunction has been widely reported in schizophrenia patients. To dissect the matrilineal structure of Han Chinese with or without schizophrenia and to decipher the maternal influence and evolutionary history of schizophrenia, a total of 1212 schizophrenia patients and 1005 matched healthy controls, all of Han Chinese origin, were recruited in Hunan Province, China. We classified haplogroup for each individual based on mitochondrial DNA (mtDNA) sequence variations and compared the haplogroup distribution pattern between cases and controls. Haplogroup B5a presented a higher frequency in cases than in controls (P = 0.02, OR = 1.67, 95% CI = [1.09, 2.56]), and this result could be confirmed by permutation analysis. Age estimation of haplogroup B5a in cases revealed a much younger age than that of controls, which was coincident with the Northern Hemisphere deglaciation at the end of the Last Glacial Maximum. Analysis of complete mtDNA in five patients belonging to haplogroup B5a showed that this background effect might be caused by haplogroup-defining variants m.8584G>A and m.10398A>G. Our results showed that matrilineal risk factor for schizophrenia had an ancient origin and might acquire a predisposing effect on schizophrenia due to the environment change and/or orchestration with other nuclear genetic factors appeared recently in human evolutionary history.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Amar, S., Shamir, A., Ovadia, O. et al. Mitochondrial DNA HV lineage increases the susceptibility to schizophrenia among Israeli Arabs Schizophr. Res., 94 (2007),pp. 354-358
    [2]
    Andrews, R.M., Kubacka, I., Chinnery, P.F. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA Nat. Genet., 23 (1999),p. 147
    [3]
    Bamne, M.N., Talkowski, M.E., Moraes, C.T. et al. Schizophr. Bull., 34 (2008),pp. 458-465
    [4]
    Bandelt, H.-J., Olivieri, A., Bravi, C. et al. 'Distorted' mitochondrial DNA sequences in schizophrenic patients Eur. J. Hum. Genet., 15 (2007),pp. 400-402
    [5]
    Bandelt, H.-J., Yao, Y.-G., Kivisild, T. Mitochondrial genes and schizophrenia Schizophr. Res., 72 (2005),pp. 267-269
    [6]
    Bandelt, H.-J., Salas, A., Taylor, R.W. et al. Exaggerated status of “novel” and “pathogenic” mtDNA sequence variants due to inadequate database searches Hum. Mutat., 30 (2009),pp. 191-196
    [7]
    Bandelt, H.J., Forster, P., Röhl, A. Median-joining networks for inferring intraspecific phylogenies Mol. Biol. Evol., 16 (1999),pp. 37-48
    [8]
    Baudouin, S.V., Saunders, D., Tiangyou, W. et al. Mitochondrial DNA and survival after sepsis: a prospective study Lancet, 366 (2005),pp. 2118-2121
    [9]
    Ben-Shachar, D., Karry, R. Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression PLoS ONE, 3 (2008),p. e3676
    [10]
    Benn, M., Schwartz, M., Nordestgaard, B.G. et al. Mitochondrial haplogroups: ischemic cardiovascular disease, other diseases, mortality, and longevity in the general population Circulation, 117 (2008),pp. 2492-2501
    [11]
    Carelli, V., Achilli, A., Valentino, M.L. et al. Haplogroup effects and recombination of mitochondrial DNA: novel clues from the analysis of Leber hereditary optic neuropathy pedigrees Am. J. Hum. Genet., 78 (2006),pp. 564-574
    [12]
    Carrera, N., Sanjuán, J., Moltó, M.D. et al. Recent adaptive selection at MAOB and ancestral susceptibility to schizophrenia Am. J. Med. Genet. B, 150B (2009),pp. 369-374
    [13]
    Charchar, F.J., Bloomer, L.D., Barnes, T.A. et al. Inheritance of coronary artery disease in men: an analysis of the role of the Y chromosome Lancet, 379 (2012),pp. 915-922
    [14]
    Chinnery, P.F., Elliott, H.R., Syed, A. et al. Mitochondrial DNA haplogroups and risk of transient ischaemic attack and ischaemic stroke: a genetic association study Lancet Neurol., 9 (2010),pp. 498-503
    [15]
    Clark, P.U., Dyke, A.S., Shakun, J.D. et al. The Last Glacial Maximum Science, 325 (2009),pp. 710-714
    [16]
    Crespi, B., Summers, K., Dorus, S. Adaptive evolution of genes underlying schizophrenia Proc. Biol. Sci., 274 (2007),pp. 2801-2810
    [17]
    Crow, T.J. Is schizophrenia the price that Homo sapiens pays for language? Schizophr. Res., 28 (1997),pp. 127-141
    [18]
    Di Rienzo, A., Hudson, R.R. An evolutionary framework for common diseases: the ancestral-susceptibility model Trends Genet., 21 (2005),pp. 596-601
    [19]
    Dror, N., Klein, E., Karry, R. et al. State-dependent alterations in mitochondrial complex I activity in platelets: a potential peripheral marker for schizophrenia Mol. Psychiatry, 7 (2002),pp. 995-1001
    [20]
    Fan, L., Yao, Y.-G. An update to MitoTool: using a new scoring system for faster mtDNA haplogroup determination Mitochondrion, 13 (2013),pp. 360-363
    [21]
    Forster, P., Harding, R., Torroni, A. et al. Origin and evolution of Native American mtDNA variation: a reappraisal Am. J. Hum. Genet., 59 (1996),pp. 935-945
    [22]
    Fuku, N., Park, K.S., Yamada, Y. et al. Mitochondrial haplogroup N9a confers resistance against type 2 diabetes in Asians Am. J. Hum. Genet., 80 (2007),pp. 407-415
    [23]
    Gauderman, W.J. Sample size requirements for matched case-control studies of gene-environment interaction Stat. Med., 21 (2002),pp. 35-50
    [24]
    Giulivi, C., Zhang, Y.F., Omanska-Klusek, A. et al. Mitochondrial dysfunction in autism JAMA, 304 (2010),pp. 2389-2396
    [25]
    Goldstein, J.M., Faraone, S.V., Chen, W.J. et al. Gender and the familial risk for schizophrenia. Disentangling confounding factors Schizophr. Res., 7 (1992),pp. 135-140
    [26]
    Gottesman, I.I., Bertelsen, A. Confirming unexpressed genotypes for schizophrenia. Risks in the offspring of Fischer's Danish identical and fraternal discordant twins Arch. Gen. Psychiatry, 46 (1989),pp. 867-872
    [27]
    Hartmann, A., Thieme, M., Nanduri, L.K. et al. Validation of microarray-based resequencing of 93 worldwide mitochondrial genomes Hum. Mutat., 30 (2009),pp. 115-122
    [28]
    Horrobin, D.F. Schizophrenia: the illness that made us human Med. Hypotheses, 50 (1998),pp. 269-288
    [29]
    Iwamoto, K., Bundo, M., Kato, T. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis Hum. Mol. Genet., 14 (2005),pp. 241-253
    [30]
    Ji, Y., Zhang, A.-M., Jia, X. et al. Mitochondrial DNA haplogroups M7b1'2 and M8a affect clinical expression of Leber hereditary optic neuropathy in Chinese families with the m.11778G-->A mutation Am. J. Hum. Genet., 83 (2008),pp. 760-768
    [31]
    Karry, R., Klein, E., Ben Shachar, D. Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study Biol. Psychiatry, 55 (2004),pp. 676-684
    [32]
    Kato, T., Kunugi, H., Nanko, S. et al. Mitochondrial DNA polymorphisms in bipolar disorder J. Affect. Disord., 62 (2001),pp. 151-164
    [33]
    Kazuno, A.A., Munakata, K., Nagai, T. et al. Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics PLoS Genet., 2 (2006),p. e128
    [34]
    Kong, Q.-P., Yao, Y.-G., Sun, C. et al. Phylogeny of east Asian mitochondrial DNA lineages inferred from complete sequences Am. J. Hum. Genet., 73 (2003),pp. 671-676
    [35]
    Lindholm, E., Cavelier, L., Howell, W.M. et al. Mitochondrial sequence variants in patients with schizophrenia Eur. J. Hum. Genet., 5 (1997),pp. 406-412
    [36]
    Lo, W.S., Xu, Z., Yu, Z. et al. Positive selection within the schizophrenia-associated GABA(A) receptor beta(2) gene PLoS ONE, 2 (2007),p. e462
    [37]
    Ma, L., Tang, J., Wang, D. et al. Evaluating risk loci for schizophrenia distilled from genome-wide association studies in Han Chinese from central China Mol. Psychiatry, 18 (2013),pp. 638-639
    [38]
    Magri, C., Gardella, R., Barlati, S.D. et al. Mitochondrial DNA haplogroups and age at onset of schizophrenia Am. J. Med. Genet. B, 144B (2007),pp. 496-501
    [39]
    Marchbanks, R.M., Ryan, M., Day, I.N. et al. A mitochondrial DNA sequence variant associated with schizophrenia and oxidative stress Schizophr. Res., 65 (2003),pp. 33-38
    [40]
    Martorell, L., Segués, T., Folch, G. et al. New variants in the mitochondrial genomes of schizophrenic patients Eur. J. Hum. Genet., 14 (2006),pp. 520-528
    [41]
    Maurer, I., Zierz, S., Möller, H. Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia Schizophr. Res., 48 (2001),pp. 125-136
    [42]
    Mosquera-Miguel, A., Torrell, H., Abasolo, N. et al. Evidence that major mtDNA European haplogroups confer risk to schizophrenia Am. J. Med. Genet. B, 159B (2012),pp. 414-421
    [43]
    Munakata, K., Iwamoto, K., Bundo, M. et al. Mitochondrial DNA 3243A>G mutation and increased expression of LARS2 gene in the brains of patients with bipolar disorder and schizophrenia Biol. Psychiatry, 57 (2005),pp. 525-532
    [44]
    Phillips, M.R., Zhang, J., Shi, Q. et al. Prevalence, treatment, and associated disability of mental disorders in four provinces in China during 2001–05: an epidemiological survey Lancet, 373 (2009),pp. 2041-2053
    [45]
    Pierson, M.J., Martinez-Arias, R., Holland, B.R. et al. Deciphering past human population movements in Oceania: provably optimal trees of 127 mtDNA genomes Mol. Biol. Evol., 23 (2006),pp. 1966-1975
    [46]
    Prabakaran, S., Swatton, J.E., Ryan, M.M. et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress Mol. Psychiatry, 9 (2004),pp. 684-697
    [47]
    Rollins, B., Martin, M.V., Sequeira, P.A. et al. Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder PLoS ONE, 4 (2009),p. e4913
    [48]
    Rosenfeld, M., Brenner-Lavie, H., Ari, S.G. et al. Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia Biol. Psychiatry, 69 (2011),pp. 980-988
    [49]
    Ruiz-Pesini, E., Mishmar, D., Brandon, M. et al. Effects of purifying and adaptive selection on regional variation in human mtDNA Science, 303 (2004),pp. 223-226
    [50]
    Saha, S., Chant, D., Welham, J. et al. A systematic review of the prevalence of schizophrenia PLoS Med., 2 (2005),p. e141
    [51]
    Saillard, J., Forster, P., Lynnerup, N. et al. mtDNA variation among Greenland Eskimos: the edge of the Beringian expansion Am. J. Hum. Genet., 67 (2000),pp. 718-726
    [52]
    Salas, A., Fachal, L., Marcos-Alonso, S. et al. Investigating the role of mitochondrial haplogroups in genetic predisposition to meningococcal disease PLoS ONE, 4 (2009),p. e8347
    [53]
    Shao, L., Martin, M.V., Watson, S.J. et al. Mitochondrial involvement in psychiatric disorders Ann. Med., 40 (2008),pp. 281-295
    [54]
    Tabbada, K.A., Trejaut, J., Loo, J.H. et al. Philippine mitochondrial DNA diversity: a populated viaduct between Taiwan and Indonesia? Mol. Biol. Evol., 27 (2010),pp. 21-31
    [55]
    Tanaka, M., Cabrera, V.M., Gonzalez, A.M. et al. Mitochondrial genome variation in eastern Asia and the peopling of Japan Genome Res., 14 (2004),pp. 1832-1850
    [56]
    Thangaraj, K., Chaubey, G., Kivisild, T. et al. Reconstructing the origin of Andaman Islanders Science, 308 (2005),p. 996
    [57]
    Ueno, H., Nishigaki, Y., Kong, Q.P. et al. Analysis of mitochondrial DNA variants in Japanese patients with schizophrenia Mitochondrion, 9 (2009),pp. 385-393
    [58]
    van der Walt, J.M., Nicodemus, K.K., Martin, E.R. et al. Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease Am. J. Hum. Genet., 72 (2003),pp. 804-811
    [59]
    van Oven, M., Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation Hum. Mutat., 30 (2009),pp. E386-E394
    [60]
    Verge, B., Alonso, Y., Miralles, C. et al. New evidence for the involvement of mitochondrial inheritance in schizophrenia: results from a cross-sectional study evaluating the risk of illness in relatives of schizophrenia patients J. Clin. Psychiatry, 73 (2012),pp. 684-690
    [61]
    Wang, C.-Y., Wang, H.-W., Yao, Y.-G. et al. Somatic mutations of mitochondrial genome in early stage breast cancer Int. J. Cancer, 121 (2007),pp. 1253-1256
    [62]
    Wolyniec, P.S., Pulver, A.E., McGrath, J.A. et al. Schizophrenia: gender and familial risk J. Psychiatr. Res., 26 (1992),pp. 17-27
    [63]
    Yao, Y.-G., Kong, Q.-P., Bandelt, H.-J. et al. Phylogeographic differentiation of mitochondrial DNA in Han Chinese Am. J. Hum. Genet., 70 (2002),pp. 635-651
    [64]
    Yu, D., Jia, X., Zhang, A.-M. et al. Mitochondrial DNA sequence variation and haplogroup distribution in Chinese patients with LHON and m.14484T>C PLoS ONE, 5 (2010),p. e13426
    [65]
    Zhang, A.-M., Jia, X., Bi, R. et al. Mitochondrial DNA haplogroup background affects LHON, but not suspected LHON, in Chinese patients PLoS ONE, 6 (2011),p. e27750
    [66]
    Zou, Y., Jia, X., Zhang, A.-M. et al. The MT-ND1 and MT-ND5 genes are mutational hotspots for Chinese families with clinical features of LHON but lacking the three primary mutations Biochem. Biophys. Res. Commun., 399 (2010),pp. 179-185
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (84) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return