[1] |
Alarcon, J.M., Brito, J.A., Hermosilla, T. et al. Ion channel formation by Alzheimer's disease amyloid beta-peptide (Abeta40) in unilamellar liposomes is determined by anionic phospholipids Peptides, 27 (2006),pp. 95-104
|
[2] |
Altenburg, M., Arbones-Mainar, J., Johnson, L. et al. Human LDL receptor enhances sequestration of ApoE4 and VLDL remnants on the surface of hepatocytes but not their internalization in mice Arterioscler. Thromb. Vasc. Biol., 28 (2008),pp. 1104-1110
|
[3] |
Alzheimer's Association Alzheimer's Association Report: 2010 Alzheimer's disease facts and figures Alzheimers Dement., 6 (2010),pp. 158-194
|
[4] |
Arana, L., Gangoiti, P., Ouro, A. et al. Ceramide and ceramide 1-phosphate in health and disease Lipids Health Dis., 9 (2010),p. 15
|
[5] |
Ariga, T., McDonald, M.P., Yu, R.K. Role of ganglioside metabolism in the pathogenesis of Alzheimer's disease – a review J. Lipid Res., 49 (2008),pp. 1157-1175
|
[6] |
Axelsen, P.H., Komatsu, H., Murray, I.V. Oxidative stress and cell membranes in the pathogenesis of Alzheimer's disease Physiology (Bethesda), 26 (2011),pp. 54-69
|
[7] |
Bales, K.R., Dodart, J.C., DeMattos, R.B. et al. Apolipoprotein E, Amyloid, and Alzheimer's disease Mol. Interv., 2 (2002),pp. 363-375
|
[8] |
Bartzokis, G. Alzheimer's disease as homeostatic responses to age-related myelin breakdown Neurobiol. Aging, 32 (2011),pp. 1341-1371
|
[9] |
Bieschke, J., Zhang, Q., Bosco, D.A. et al. Small molecule oxidation products trigger disease-associated protein misfolding Acc. Chem. Res., 39 (2006),pp. 611-619
|
[10] |
Bikman, B.T., Summers, S.A. Sphingolipids and hepatic steatosis Adv. Exp. Med. Biol., 721 (2011),pp. 87-97
|
[11] |
Björkhem, I., Cedazo-Minguez, A., Leoni, V. et al. Oxysterols and neurodegenerative diseases Mol. Aspects Med., 30 (2009),pp. 171-179
|
[12] |
Björkhem, I., Heverin, M., Leoni, V. et al. Oxysterols and Alzheimer's disease Acta Neurol. Scand., 114 (2006),pp. 43-49
|
[13] |
Bodovitz, S., Klein, W.L. Cholesterol modulates a-secretase cleavage of amyloid precursor protein J. Biol. Chem., 271 (1996),pp. 4436-4440
|
[14] |
Bothmer, J., Markerink, M., Jolles, J. Phosphoinositide kinase activities in synaptosomes prepared from brains of patients with Alzheimer's disease and controls Neurosci. Lett., 176 (1994),pp. 169-172
|
[15] |
Brookmeyer, R., Johnson, E., Ziegler-Graham, K. et al. Forecasting the global burden of Alzheimer's disease Alzheimers Dement., 3 (2007),pp. 186-191
|
[16] |
Brown, A.J., Jessup, W. Oxysterols: sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis Mol. Aspects Med., 30 (2009),pp. 111-122
|
[17] |
Brown, J.I., Theisler, C., Silberman, S. et al. Differential expression of cholesterol hydroxylases in Alzheimer's disease J. Biol. Chem., 279 (2004),pp. 34674-34681
|
[18] |
Burgess, J.W., Boucher, J., Neville, T.A. et al. Phosphatidylinositol promotes cholesterol transport and excretion J. Lipid Res., 44 (2003),pp. 1355-1363
|
[19] |
Burgess, J.W., Neville, T.A., Rouillard, P. et al. Phosphatidylinositol increases HDL-C levels in humans J. Lipid Res., 46 (2005),pp. 350-355
|
[20] |
Burns, M.P., Rebeck, G.W. Intracellular cholesterol homeostasis and amyloid precursor protein processing Biochim. Biophys. Acta, 1801 (2010),pp. 853-859
|
[21] |
Burow, M.E., Weldon, C.B., Collins-Burow, B.M. et al. Cross-talk between phosphatidylinositol 3-kinase and sphingomyelinase pathways as a mechanism for cell survival/death decisions J. Biol. Chem., 275 (2000),pp. 9628-9635
|
[22] |
Calder, P.C. Dietary modification of inflammation with lipids Proc. Nutr. Soc., 61 (2002),pp. 345-358
|
[23] |
Cataldo, A.M., Petanceska, S., Peterhoff, C.M. et al. J. Neurosci., 23 (2003),pp. 6788-6792
|
[24] |
Chen, X., Wagener, J.F., Morgan, D.H. et al. Endolysosome mechanisms associated with Alzheimer's disease-like pathology in rabbits ingesting cholesterol-enriched diet J. Alzheimers Dis., 22 (2010),pp. 1289-1303
|
[25] |
Cheng, H., Zhou, Y., Holtzman, D.M. et al. Apolipoprotein E mediates sulfatide depletion in animal models of Alzheimer's disease Neurobiol. Aging, 31 (2010),pp. 1188-1196
|
[26] |
Chi, E.Y., Ege, C., Winans, A. et al. Lipid membrane templates the ordering and induces the fibrillogenesis of Alzheimer's disease amyloid-beta peptide Proteins, 72 (2008),pp. 1-24
|
[27] |
Choucair, A., Chakrapani, M., Chakravarthy, B. et al. Preferential accumulation of Abeta(1-42) on gel phase domains of lipid bilayers: an AFM and fluorescence study Biochim. Biophys. Acta, 1768 (2007),pp. 146-154
|
[28] |
Corder, E.H., Saunders, A.M., Strittmatter, W.J. et al. Gene dose of Apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families Science, 261 (1993),pp. 921-923
|
[29] |
Cordy, J.M., Hussain, I., Dingwall, C. et al. Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 11735-11740
|
[30] |
Cutler, R.G., Kelly, J., Storie, K. et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 2070-2075
|
[31] |
De La Monte, S.M. Metabolic derangements mediate cognitive impairment and Alzheimer's disease: role of peripheral insulin-resistance diseases Panminerva Med., 54 (2012),pp. 171-178
|
[32] |
DeKroon, R., Robinette, J.B., Hjelmeland, A.B. et al. Circ. Res., 99 (2006),pp. 829-836
|
[33] |
Ditaranto-Desimone, K., Saito, M., Tekirian, T.L. et al. Neuronal endosomal/lysosomal membrane destabilization activates caspases and induces abnormal accumulation of the lipid secondary messenger ceramide Brain Res. Bull., 59 (2003),pp. 523-531
|
[34] |
Ege, C., Lee, K.Y. Insertion of Alzheimer's Abeta 40 peptide into lipid monolayers Biophys. J., 87 (2004),pp. 1732-1740
|
[35] |
Esch, F.S., Keim, P.S., Beattie, E.C. et al. Cleavage of amyloid beta peptide during constitutive processing of its precursor Science, 248 (1990),pp. 1122-1124
|
[36] |
Fadeel, B., Xue, D. The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease Crit. Rev. Biochem. Mol. Biol., 44 (2009),pp. 264-277
|
[37] |
Famer, D., Meaney, S., Mousavi, M. et al. Biochem. Biophys. Res. Commun., 359 (2007),pp. 46-50
|
[38] |
Fantini, J., Yahi, N. Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases Expert Rev. Mol. Med., 1 (2010),p. e27
|
[39] |
Farooqui, A.A., Ong, W.Y., Farooqui, T. Lipid mediators in the nucleus: their potential contribution to Alzheimer's disease Biochim. Biophys. Acta, 1801 (2010),pp. 906-916
|
[40] |
Ferri, C.P., Prince, M., Brayne, C. et al. Global prevalence of dementia: a Delphi consensus study Lancet, 366 (2005),pp. 2112-2117
|
[41] |
Fukunaga, S., Ueno, H., Yamaguchi, T. et al. GM1 cluster mediates formation of toxic Aß fibrils by providing hydrophobic environments Biochemistry, 51 (2012),pp. 8125-8131
|
[42] |
Futerman, A.H., Riezman, H. The ins and outs of sphingolipid synthesis Trends Cell Biol., 15 (2005),pp. 312-318
|
[43] |
Gamba, P., Testa, G., Sottero, B. et al. The link between altered cholesterol metabolism and Alzheimer's disease Ann. N. Y. Acad. Sci., 1259 (2012),pp. 54-64
|
[44] |
Gill, J.M., Sattar, N. Ceramides: a new player in the inflammation-insulin resistance paradigm? Diabetologia, 52 (2009),pp. 2475-2477
|
[45] |
Goodenowe, D.B., Cook, L.L., Liu, J. et al. Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer's disease and dementia J. Lipid Res., 48 (2007),pp. 2485-2498
|
[46] |
Grimble, R.F. Dietary lipids and the inflammatory response Proc. Nutr. Soc., 57 (1998),pp. 535-542
|
[47] |
Grimm, M.O.W., Grimm, H.S., Hartmann, T. Amyloid beta as a regulator of lipid homeostasis Trends Mol. Med., 13 (2007),pp. 337-344
|
[48] |
Gruenberg, J. Lipids in endocytic membrane transport and sorting Curr. Opin. Cell Biol., 15 (2003),pp. 382-388
|
[49] |
Guan, Z., Wang, Y., Cairns, N.J. et al. Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease J. Neuropathol. Exp. Neurol., 58 (1999),pp. 740-747
|
[50] |
Gupta, V.B., Laws, S.M., Villemagne, V.L. et al. Plasma apolipoprotein E and Alzheimer disease risk Neurology, 76 (2011),pp. 1091-1098
|
[51] |
Han, X. Potential mechanisms contributing to sulfatide depletion at the earliest clinically recognizable stage of Alzheimer's disease: a tale of shotgun lipidomics J. Neurochem., 103 (2007),pp. 171-178
|
[52] |
Han, X., M Holtzman, D., , Kelley, J. et al. Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer's disease: potential role in disease pathogenesis J. Neurochem., 82 (2002),pp. 809-818
|
[53] |
Han, X., M Holtzman, D., Plasmogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry J. Neurochem., 77 (2001),pp. 1168-1180
|
[54] |
Hane, F., Drolle, E., Gaikwad, R. et al. Amyloid-beta aggregation on model lipid membranes: an atomic force microscopy study J. Alzheimers Dis., 26 (2011),pp. 485-494
|
[55] |
Hatters, D.M., Peters-Libeu, C.A., Weisgraber, K.H. Engineering conformational destabilization into mouse apolipoprotein E. A model for a unique property of human apolipoprotein E4 J. Biol. Chem., 280 (2005),pp. 26477-26482
|
[56] |
Heverin, M., Bogdanovic, N., Lütjohann, D. et al. Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease J. Lipid Res., 45 (2004),pp. 186-193
|
[57] |
Heverin, M., Meaney, S., L, tjohann, D. et al. Crossing the barrier: net flux of 27-hydroxycholesterol into the human brain J. Lipid Res., 46 (2005),pp. 1047-1052
|
[58] |
Holland, W.L., Summers, S.A. Endocr. Rev., 29 (2008),pp. 381-402
|
[59] |
Holtzman, D.M. Role of apoE/Aβ interactions in Alzheimer's disease: insights from transgenic mouse models Mol. Psychiatry, 7 (2002),pp. 132-135
|
[60] |
Holvoet, P. Relations between metabolic syndrome, oxidative stress and inflammation and cardiovascular disease Verh. K. Acad. Geneeskd. Belg., 70 (2008),pp. 193-219
|
[61] |
Hsiao, J.H., Fu, Y., Hill, A.F. et al. Elevation in sphingomyelin synthase activity is associated with increases in amyloid-beta peptide generation PLoS ONE, 8 (2013),p. e74016
|
[62] |
Hughes, T.M., Kuller, L.H., Lopez, O.L. et al. Markers of cholesterol metabolism in the brain show stronger associations with cerebrovascular disease than Alzheimer's disease J. Alzheimers Dis., 30 (2012),pp. 53-61
|
[63] |
Igarashi, M., Ma, K., Kim, H.-W. et al. Disturbed choline plasmalogen and phospholipid fatty acid concentrations in Alzheimer's disease prefrontal cortex J. Alzheimers Dis., 24 (2011),pp. 507-517
|
[64] |
Iqbal, K., Alonso, AdelC., Chen, S. et al. Tau pathology in Alzheimer disease and other tauopathies Biochim. Biophys. Acta, 1739 (2005),pp. 198-210
|
[65] |
Iuliano, L., Micheletta, F., Natoli, S. et al. Measurement of oxysterols and α-tocopherol in plasma and tissue samples as indices of oxidant stress status Anal. Biochem., 312 (2003),pp. 217-223
|
[66] |
Jenner, A.M., Lim, W.L.F., Ng, M.P.E. et al. Neuroscience, 169 (2010),pp. 109-115
|
[67] |
Jenner, A.M., Ren, M., Rajendran, R. et al. Zinc supplementation inhibits lipid peroxidation and the development of atherosclerosis in rabbits fed a high cholesterol diet Free Radic. Biol. Med., 42 (2007),pp. 559-566
|
[68] |
Ji, J., Zhang, L., Wang, P. et al. Saturated free fatty acid, palmitic acid, induces apoptosis in fetal hepatocytes in culture Exp. Toxicol. Pathol., 56 (2005),pp. 369-376
|
[69] |
Kakio, A., Nishimoto, S., Kozutsumi, Y. et al. Formation of a membrane-active form of amyloid beta-protein in raft-like model membranes Biochem. Biophys. Res. Commun., 303 (2003),pp. 514-518
|
[70] |
Kojro, E., Gimpl, G., Lammich, S. et al. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on alpha-secretase ADAM 10 Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 5815-5820
|
[71] |
Kuo, Y.M., Emmerling, M.R., Bisgaier, C.L. et al. Elevated low-density lipoprotein in Alzheimer's disease correlates with brain abeta 1-42 levels Biochem. Biophys. Res. Commun., 252 (1998),pp. 711-715
|
[72] |
Landman, N., Jeong, S.Y., Shin, S.Y. et al. Presenilin mutations linked to familial Alzheimer's disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 19524-19529
|
[73] |
Lam, S., Shui, G. Lipidomics as a principal tool for advancing biomedical research J. Genet. Genomics, 40 (2013),pp. 375-390
|
[74] |
Lam, S.M., Wang, Y., Duan, X. et al. The brain lipidomes of subcortical ischemic vascular dementia and mixed dementia Neurobiol. Aging. (2014)
|
[75] |
Laws, S.M., Hone, E., Gandy, S. et al. J. Neurochem., 84 (2003),pp. 1215-1236
|
[76] |
Lee, C.-Y.J., Huang, S.H., Jenner, A.M. et al. Free Radic. Biol. Med., 44 (2008),pp. 1314-1422
|
[77] |
Lee, J.T., Xu, J., Lee, J.M. et al. Amyloid-beta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase–ceramide pathway J. Cell Biol., 164 (2004),pp. 123-131
|
[78] |
Lemkul, J.A., Bevan, D.R. Lipid composition influences the release of Alzheimer's amyloid ß-peptide from membranes Protein Sci., 20 (2011),pp. 1530-1545
|
[79] |
Lemkul, J.A., Bevan, D.R. Aggregation of Alzheimer's amyloid beta-peptide in biological membranes: a molecular dynamics study Biochemistry, 52 (2013),pp. 4971-4980
|
[80] |
Leoni, V.
|
[81] |
Leoni, V., Solomon, A., Kivipelto, M. Links between ApoE, brain cholesterol metabolism, tau and amyloid β-peptide in patients with cognitive impairment Biochem. Soc. Trans., 38 (2010),pp. 1021-1025
|
[82] |
Li, J., Kanekiyo, T., Shinohara, M. et al. Differential regulation of amyloid-beta endocytic trafficking and lysosomal degradation by apolipoprotein E isoforms J. Biol. Chem., 287 (2012),pp. 44593-44601
|
[83] |
Lim, W.L., Lam, S.M., Shui, G. et al. Effects of a high-fat, high-cholesterol diet on brain lipid profiles in apolipoprotein E epsilon3 and epsilon4 knock-in mice Neurobiol. Aging, 34 (2013),pp. 2217-2224
|
[84] |
Lipina, C., Hundal, H.S. Sphingolipids: agents provocateurs in the pathogenesis of insulin resistance Diabetologia, 54 (2011),pp. 1596-1607
|
[85] |
Lütjohann, D., Papassotiropoulos, A., Björkhem, I. et al. Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients J. Lipid Res., 41 (2000),pp. 195-198
|
[86] |
Mahley, R.W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology Science, 240 (1988),pp. 622-630
|
[87] |
Malaguarnera, M., Di Rosa, M., Nicoletti, F. et al. Molecular mechanisms involved in NAFLD progression J. Mol. Med. (Berl.), 87 (2009),pp. 679-695
|
[88] |
Marquer, C., Devauges, V., Cossec, J.C. et al. Local cholesterol increase triggers amyloid precursor protein-BACE 1 clustering in lipid rafts and rapid endocytosis FASEB J., 25 (2011),pp. 1295-1305
|
[89] |
Martins, I.J., Berger, T., Sharman, M.J. et al. Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease J. Neurochem., 111 (2009),pp. 1275-1308
|
[90] |
Martins, I.J., Hone, E., Foster, J.K. et al. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease Mol. Psychiatry, 11 (2006),pp. 721-736
|
[91] |
Martins, I.J., Lim, W.L., Wilson, A. et al. The acceleration of aging and Alzheimer's disease through the biological mechanisms behind obesity and type II diabetes Health, 5 (2013),pp. 913-920
|
[92] |
Martins, I.J., Wilson, A.C., Lim, W.L.F. et al. Sirtuin 1 mediates the obesity induced risk of common degenerative disease: Alzheimer's disease, coronary artery disease and type 2 diabetes Health, 4 (2012),pp. 1448-1456
|
[93] |
Martins, R.N., Clarnette, R., Fisher, C. et al. Neuroreport, 6 (1995),pp. 1513-1516
|
[94] |
Marwarha, G., Raza, S., Prasanthi, J.R. et al. Gadd153 and NF-kappaB crosstalk regulates 27-hydroxycholesterol-induced increase in BACE1 and beta-amyloid production in human neuroblastoma SH-SY5Y cells PLoS ONE, 8 (2013),p. e70773
|
[95] |
Mattson, M.P. Pathways towards and away from Alzheimer's disease Nature, 430 (2004),pp. 631-639
|
[96] |
McLaurin, J., Franklin, T., Chakrabartty, A. et al. Phosphatidylinositol and inositol involvement in Alzheimer amyloid-beta fibril growth and arrest J. Mol. Biol., 278 (1998),pp. 183-194
|
[97] |
Meaney, S., Heverin, M., Panzenboeck, U. et al. Novel route for elimination of brain oxysterols across the blood-brain barrier: conversion into 7alpha-hydroxy-3-oxo-4-cholestenoic acid J. Lipid Res., 48 (2007),pp. 944-951
|
[98] |
Meikle, P.J., Christopher, M.J. Lipidomics is providing new insight into the metabolic syndrome and its sequelae Curr. Opin. Lipidol., 22 (2011),pp. 210-215
|
[99] |
Merched, A., Xia, Y., Visvikis, S. et al. Decreased high-density lipoprotein cholesterol and serum apolipoprotein AI concentrations are highly correlated with the severity of Alzheimer's disease Neurobiol. Aging, 21 (2000),pp. 27-30
|
[100] |
Mohmmad Abdul, H., Butterfield, D.A. Protection against amyloid beta-peptide (1-42)-induced loss of phospholipid asymmetry in synaptosomal membranes by tricyclodecan-9-xanthogenate (D609) and ferulic acid ethyl ester, implications for Alzheimer's disease Biochim. Biophys. Acta, 1741 (2005),pp. 140-148
|
[101] |
Morishima-Kawashima, M., Han, X., Tanimura, Y. et al. Effects of human apolipoprotein E isoforms on the amyloid beta-protein concentration and lipid composition in brain low-density membrane domains J. Neurochem., 101 (2007),pp. 949-958
|
[102] |
Nagao, K., Yanagita, T. Bioactive lipids in metabolic syndrome Prog. Lipid Res., 47 (2008),pp. 127-146
|
[103] |
Nelson, T.J., Alkon, D.L. Oxidation of cholesterol by amyloid precursor protein and β-amyloid peptide J. Biol. Chem., 280 (2005),pp. 7377-7387
|
[104] |
Nichols, B. Endocytosis of lipid-anchored proteins, excluding GEECs from the crowd J. Cell Biol., 186 (2009),pp. 457-459
|
[105] |
Oma, S., Mawatari, S., Saito, K. et al. Changes in phospholipid composition of erythrocyte membrane in Alzheimer's disease Dement. Geriatr. Cogn. Dis. Extra, 2 (2012),pp. 298-303
|
[106] |
Papassotiropoulos, A., Lütjohann, D., Bagli, M. et al. 24S-hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia J. Psychiatr. Res., 36 (2002),pp. 27-32
|
[107] |
Patil, S., Sheng, L., Masserang, A. et al. Palmitic acid-treated astrocytes induce BACE1 upregulation and accumulation of C-terminal fragment of APP in primary cortical neurons Neurosci. Lett., 406 (2006),pp. 55-59
|
[108] |
Petelska, A.D., Figaszewski, Z.A. The equilibria between monovalent ions and phosphatidylcholine monolayer at the air/water interface J. Membr. Biol., 246 (2013),pp. 467-471
|
[109] |
Peters-Libeu, C.A., Newhouse, Y., Hall, S.C. et al. Apolipoprotein E*dipalmitoylphosphatidylcholine particles are ellipsoidal in solution J. Lipid Res., 48 (2007),pp. 1035-1044
|
[110] |
Pichler, H., Riezman, H. Where sterols are required for endocytosis Biochim. Biophys. Acta, 1666 (2004),pp. 51-61
|
[111] |
Poirier, J., Davignon, J. Apolipoprotein E polymorphism and Alzheimer's disease Lancet, 342 (1993),pp. 697-699
|
[112] |
Puglielli, L., Ellis, B.C., Saunders, A.J. et al. Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis J. Biol. Chem., 278 (2003),pp. 19777-19783
|
[113] |
Puppala, J., Siddapuram, S.P., Akka, J. et al. Genetics of nonalcoholic fatty liver disease: an overview J. Genet. Genomics, 40 (2013),pp. 15-22
|
[114] |
Quehenberger, O., Armando, A.M., Brown, A.H. et al. Lipidomics reveals a remarkable diversity of lipids in human plasma J. Lipid Res., 51 (2010),pp. 3299-3305
|
[115] |
Rall, S.C.J., Weisgraber, K.H., Mahley, R.W. Human apolipoprotein E J. Biol. Chem., 257 (1982),pp. 4171-4178
|
[116] |
Refolo, L.M., Pappolla, M.A., Malester, B. et al. Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model Neurobiol. Dis., 7 (2000),pp. 321-331
|
[117] |
Roher, A.E., Kuo, Y.M., Kokjohn, K.M. et al. Amyloid and lipids in the pathology of Alzheimer disease Amyloid, 6 (1999),pp. 136-145
|
[118] |
Roses, A.D. Apolipoprotein E and Alzheimer's disease. A rapidly expanding field with medical and epidemiological consequences Ann. N. Y. Acad. Sci., 802 (1996),pp. 50-57
|
[119] |
Sabate, R., Espargaro, A., Barbosa-Barros, L. et al. Effect of the surface charge of artificial model membranes on the aggregation of amyloid beta-peptide Biochimie, 94 (2012),pp. 1730-1738
|
[120] |
Sanchez-Mejia, R.O., Newman, J.W., Toh, S. et al. Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer's disease Nat. Neurosci., 11 (2008),pp. 1311-1318
|
[121] |
Satoi, H., Tomimoto, H., Ohtani, R. et al. Astroglial expression of ceramide in Alzheimer's disease brains: a role during neuronal apoptosis Neuroscience, 130 (2005),pp. 657-666
|
[122] |
Schmitz-Peiffer, C. Targeting ceramide synthesis to reverse insulin resistance Diabetes, 59 (2010),pp. 2351-2353
|
[123] |
Selkoe, D.J. Alzheimer's disease: genes, proteins, and therapy Physiol. Rev., 81 (2001),pp. 741-766
|
[124] |
Shafaati, M., Marutle, A., Pettersson, H. et al. J. Lipid Res., 52 (2011),pp. 1004-1010
|
[125] |
Shafaati, M., Solomon, A., Kivipelto, M. et al. Levels of ApoE in cerebrospinal fluid are correlated with Tau and 24S-hydroxycholesterol in patients with cognitive disorders Neurosci. Lett., 425 (2007),pp. 78-82
|
[126] |
Sharman, M.J., Morici, M., Hone, E. et al. J. Alzheimers Dis., 21 (2010),pp. 403-409
|
[127] |
Sharman, M.J., Shui, G., Fernandis, A.Z. et al. J. Alzheimers Dis., 20 (2010),pp. 105-111
|
[128] |
Shie, F.-S., Jin, L.-W., Cook, D.G. et al. Diet-induced hypercholesterolemia enhances brain Aβ accumulation in transgenic mice Neuroreport, 13 (2002),pp. 455-459
|
[129] |
Simons, M., Keller, P., Strooper, B.D. et al. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 6460-6464
|
[130] |
Solomon, A., Leoni, V., Kivipelto, M. et al. Plasma levels of 24S-hydroxycholesterol reflect brain volumes in patients without objective cognitive impairment but not in those with Alzheimer's disease Neurosci. Lett., 462 (2009),pp. 89-93
|
[131] |
Soreghan, B., Thomas, S.N., Yang, A.J. Aberrant sphingomyelin/ceramide metabolic-induced neuronal endosomal/lysosomal dysfunction: potential pathological consequences in age-related neurodegeneration Adv. Drug Deliv. Rev., 55 (2003),pp. 1515-1524
|
[132] |
Soriano, S., Chyung, A.S., Chen, X. et al. Expression of beta-amyloid precursor protein-CD3 gamma chimeras to demonstrate the selective generation of amyloid beta(1-40) and amyloid beta(1-42) peptides within secretory and endocytic compartments J. Biol. Chem., 274 (1999),pp. 32295-32300
|
[133] |
Sparks, D.L., Scheff, S.W., , Liu, H. et al. Induction of Alzheimer-like β-Amyloid immunoreactivity in the brains of rabbits with dietary cholesterol Exp. Neurol., 126 (1994),pp. 88-94
|
[134] |
Stamler, C.J., Breznan, D., Neville, T.A. et al. J. Lipid Res., 41 (2000),pp. 1214-1221
|
[135] |
Stokes, C.E., Hawthorne, J.N. Reduced phosphoinositide concentrations in anterior temporal cortex of Alzheimer-diseased brains J. Neurochem., 48 (1987),pp. 1018-1021
|
[136] |
Strittmatter, W.J., Roses, A.D. Apolipoprotein E and Alzheimer's disease Annu. Rev. Neurosci., 19 (1996),pp. 53-77
|
[137] |
Strittmatter, W.J., Saunders, A.M., Schmechel, D. et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease Proc. Natl. Acad. Sci. USA, 90 (1993),pp. 1977-1981
|
[138] |
Takechi, R., Galloway, S., Pallebage-Gamarallage, M.M. et al. Dietary fats, cerebrovasculature and Alzheimer's disease risk Prog. Lipid Res., 49 (2010),pp. 159-170
|
[139] |
Tamboli, I.Y., Tien, N.T., Walter, J. Sphingolipid storage impairs autophagic clearance of Alzheimer-associated proteins Autophagy, 7 (2011),pp. 645-646
|
[140] |
Treusch, S., Hamamichi, S., Goodman, J.L. et al. Functional links between Abeta toxicity, endocytic trafficking, and Alzheimer's disease risk factors in yeast Science, 334 (2011),pp. 1241-1245
|
[141] |
Tuppo, E.E., Arias, H.R. The role of inflammation in Alzheimer's disease Int. J. Biochem. Cell Biol., 37 (2005),pp. 289-305
|
[142] |
Vaja, J., Schipper, H.M. Oxysterols, cholesterol homeostasis, and Alzheimer's disease J. Neurochem., 102 (2007),pp. 1727-1737
|
[143] |
van Echten-Deckert, G., Walter, J. Sphingolipids: critical players in Alzheimer's disease Prog. Lipid Res., 51 (2012),pp. 378-393
|
[144] |
Vargas, J., Alarcon, J.M., Rojas, E. Displacement currents associated with the insertion of Alzheimer disease amyloid beta-peptide into planar bilayer membranes Biophys. J., 79 (2000),pp. 934-944
|
[145] |
Vassar, R., Bennett, B.O., Babu-Khan, S. et al. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE Science, 286 (1999),pp. 735-741
|
[146] |
Verghese, P.B., Castellano, J.M., Garai, K. et al. ApoE influences amyloid-ß (Aß) clearance despite minimal apoE/Aß association in physiological conditions Proc. Natl. Acad. Sci. USA, 110 (2013),pp. E1807-E1816
|
[147] |
Vetrivel, K.S., Barman, A., Chen, Y. et al. Loss of cleavage at beta'-site contributes to apparent increase in beta-amyloid peptide (Abeta) secretion by beta-secretase (BACE1)-glycosylphosphatidylinositol (GPI) processing of amyloid precursor protein J. Biol. Chem., 286 (2011),pp. 26166-26177
|
[148] |
Wahrle, S., Das, P., Nyborg, A.C. et al. Cholesterol-dependent γ-secretase activity in buoyant cholesterol-rich membrane microdomains Neurobiol. Dis., 9 (2002),pp. 11-23
|
[149] |
Wenk, M.R. The emerging field of lipidomics Nat. Rev. Drug Discov., 4 (2005),pp. 594-610
|
[150] |
Wenk, M.R. Lipidomics: new tools and applications Cell, 143 (2010),pp. 888-895
|
[151] |
Williams, T.L., Serpell, L.C. Membrane and surface interactions of Alzheimer's Abeta peptide–insights into the mechanism of cytotoxicity FEBS J., 278 (2011),pp. 3905-3917
|
[152] |
Wood, P.L. Lipidomics of Alzheimer's disease: current status Alzheimers Res. Ther., 4 (2012),p. 5
|
[153] |
Wyss-Coray, T., Rogers, J. Inflammation in Alzheimer disease‒a brief review of the basic science and clinical literature Cold Spring Harb. Perspect. Med., 2 (2012),p. a006346
|
[154] |
Yaffe, K., Kanaya, A., Lindquist, K. et al. The metabolic syndrome, inflammation, and risk of cognitive decline JAMA, 292 (2004),pp. 2237-2242
|
[155] |
Yao, Y., Chinnici, C., Tang, H. et al. Brain inflammation and oxidative stress in a transgenic mouse model of Alzheimer-like brain amyloidosis J. Neuroinflammation, 1 (2004),p. 21
|
[156] |
Yu, C., Nwabuisi-Heath, E., Laxton, K. et al. Endocytic pathways mediating oligomeric Abeta42 neurotoxicity Mol. Neurodegener., 5 (2010),p. 19
|
[157] |
Zannis, V.I., Breslow, J.L., Utermann, G. et al. Proposed nomenclature of apoE isoproteins, apoE genotypes, and phenotypes J. Lipid Res., 23 (1982),pp. 911-914
|
[158] |
Zehmer, J.K., Huang, Y., Peng, G. et al. A role for lipid droplets in inter-membrane lipid traffic Proteomics, 9 (2009),pp. 914-921
|
[159] |
Zhang, M. Endocytic mechanisms and drug discovery in neurodegenerative diseases Front. Biosci., 13 (2008),pp. 6086-6105
|
[160] |
Zinser, E.G., Hartmann, T., Grimm, M.O.W. Amyloid beta-protein and lipid metabolism Biochim. Biophys. Acta, 1768 (2007),pp. 1991-2001
|
[161] |
Zubenko, G.S., Stiffler, J.S., Hughes, H.B. et al. Reductions in brain phosphatidylinositol kinase activities in Alzheimer's disease Biol. Psychiatr., 45 (1999),pp. 731-736
|
[162] |
Zuliani, G., Donnorso, M.P., Bosi, C. et al. Plasma 24S-hydroxycholesterol levels in elderly subjects with late onset Alzheimer's disease or vascular dementia: a case-control study BMC Neurol., 11 (2011),p. 121
|