5.9
CiteScore
5.9
Impact Factor
Volume 41 Issue 5
May  2014
Turn off MathJax
Article Contents

The Involvement of Lipids in Alzheimer's Disease

doi: 10.1016/j.jgg.2014.04.003
More Information
  • Corresponding author: E-mail address: ralph.n.martins@gmail.com (Ralph Nigel Martins)
  • Received Date: 2013-10-30
  • Accepted Date: 2014-04-15
  • Rev Recd Date: 2014-04-11
  • Available Online: 2014-05-02
  • Publish Date: 2014-05-20
  • It has been estimated that Alzheimer's disease (AD), the most common form of dementia, will affect approximately 81 million individuals by 2040. To date, the actual cause and cascade of events in the progression of this disease have not been fully determined. Furthermore, there is currently no definitive blood test or simple diagnostic method for AD. Considerable efforts have been put into proteomic approaches to develop a diagnostic blood test, but to date these efforts have not been successful. More recently, there has been a stronger focus on lipidomic studies in the hope of increasing our understanding of the underlying mechanisms leading to AD and developing an AD blood test. It is well known that the strongest genetic risk factor for AD is the ε4 variant of apolipoprotein E (APOE). Evidence suggests that the ApoE protein, a major lipid transporter, plays a key role in the pathogenesis of AD, and its role in both normal and aberrant lipid metabolism warrants further extensive investigation. Here, we review ApoE-lipid interactions, as well as the roles that lipids may play in the pathogenesis of AD.
  • loading
  • [1]
    Alarcon, J.M., Brito, J.A., Hermosilla, T. et al. Ion channel formation by Alzheimer's disease amyloid beta-peptide (Abeta40) in unilamellar liposomes is determined by anionic phospholipids Peptides, 27 (2006),pp. 95-104
    [2]
    Altenburg, M., Arbones-Mainar, J., Johnson, L. et al. Human LDL receptor enhances sequestration of ApoE4 and VLDL remnants on the surface of hepatocytes but not their internalization in mice Arterioscler. Thromb. Vasc. Biol., 28 (2008),pp. 1104-1110
    [3]
    Alzheimer's Association Alzheimer's Association Report: 2010 Alzheimer's disease facts and figures Alzheimers Dement., 6 (2010),pp. 158-194
    [4]
    Arana, L., Gangoiti, P., Ouro, A. et al. Ceramide and ceramide 1-phosphate in health and disease Lipids Health Dis., 9 (2010),p. 15
    [5]
    Ariga, T., McDonald, M.P., Yu, R.K. Role of ganglioside metabolism in the pathogenesis of Alzheimer's disease – a review J. Lipid Res., 49 (2008),pp. 1157-1175
    [6]
    Axelsen, P.H., Komatsu, H., Murray, I.V. Oxidative stress and cell membranes in the pathogenesis of Alzheimer's disease Physiology (Bethesda), 26 (2011),pp. 54-69
    [7]
    Bales, K.R., Dodart, J.C., DeMattos, R.B. et al. Apolipoprotein E, Amyloid, and Alzheimer's disease Mol. Interv., 2 (2002),pp. 363-375
    [8]
    Bartzokis, G. Alzheimer's disease as homeostatic responses to age-related myelin breakdown Neurobiol. Aging, 32 (2011),pp. 1341-1371
    [9]
    Bieschke, J., Zhang, Q., Bosco, D.A. et al. Small molecule oxidation products trigger disease-associated protein misfolding Acc. Chem. Res., 39 (2006),pp. 611-619
    [10]
    Bikman, B.T., Summers, S.A. Sphingolipids and hepatic steatosis Adv. Exp. Med. Biol., 721 (2011),pp. 87-97
    [11]
    Björkhem, I., Cedazo-Minguez, A., Leoni, V. et al. Oxysterols and neurodegenerative diseases Mol. Aspects Med., 30 (2009),pp. 171-179
    [12]
    Björkhem, I., Heverin, M., Leoni, V. et al. Oxysterols and Alzheimer's disease Acta Neurol. Scand., 114 (2006),pp. 43-49
    [13]
    Bodovitz, S., Klein, W.L. Cholesterol modulates a-secretase cleavage of amyloid precursor protein J. Biol. Chem., 271 (1996),pp. 4436-4440
    [14]
    Bothmer, J., Markerink, M., Jolles, J. Phosphoinositide kinase activities in synaptosomes prepared from brains of patients with Alzheimer's disease and controls Neurosci. Lett., 176 (1994),pp. 169-172
    [15]
    Brookmeyer, R., Johnson, E., Ziegler-Graham, K. et al. Forecasting the global burden of Alzheimer's disease Alzheimers Dement., 3 (2007),pp. 186-191
    [16]
    Brown, A.J., Jessup, W. Oxysterols: sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis Mol. Aspects Med., 30 (2009),pp. 111-122
    [17]
    Brown, J.I., Theisler, C., Silberman, S. et al. Differential expression of cholesterol hydroxylases in Alzheimer's disease J. Biol. Chem., 279 (2004),pp. 34674-34681
    [18]
    Burgess, J.W., Boucher, J., Neville, T.A. et al. Phosphatidylinositol promotes cholesterol transport and excretion J. Lipid Res., 44 (2003),pp. 1355-1363
    [19]
    Burgess, J.W., Neville, T.A., Rouillard, P. et al. Phosphatidylinositol increases HDL-C levels in humans J. Lipid Res., 46 (2005),pp. 350-355
    [20]
    Burns, M.P., Rebeck, G.W. Intracellular cholesterol homeostasis and amyloid precursor protein processing Biochim. Biophys. Acta, 1801 (2010),pp. 853-859
    [21]
    Burow, M.E., Weldon, C.B., Collins-Burow, B.M. et al. Cross-talk between phosphatidylinositol 3-kinase and sphingomyelinase pathways as a mechanism for cell survival/death decisions J. Biol. Chem., 275 (2000),pp. 9628-9635
    [22]
    Calder, P.C. Dietary modification of inflammation with lipids Proc. Nutr. Soc., 61 (2002),pp. 345-358
    [23]
    Cataldo, A.M., Petanceska, S., Peterhoff, C.M. et al. J. Neurosci., 23 (2003),pp. 6788-6792
    [24]
    Chen, X., Wagener, J.F., Morgan, D.H. et al. Endolysosome mechanisms associated with Alzheimer's disease-like pathology in rabbits ingesting cholesterol-enriched diet J. Alzheimers Dis., 22 (2010),pp. 1289-1303
    [25]
    Cheng, H., Zhou, Y., Holtzman, D.M. et al. Apolipoprotein E mediates sulfatide depletion in animal models of Alzheimer's disease Neurobiol. Aging, 31 (2010),pp. 1188-1196
    [26]
    Chi, E.Y., Ege, C., Winans, A. et al. Lipid membrane templates the ordering and induces the fibrillogenesis of Alzheimer's disease amyloid-beta peptide Proteins, 72 (2008),pp. 1-24
    [27]
    Choucair, A., Chakrapani, M., Chakravarthy, B. et al. Preferential accumulation of Abeta(1-42) on gel phase domains of lipid bilayers: an AFM and fluorescence study Biochim. Biophys. Acta, 1768 (2007),pp. 146-154
    [28]
    Corder, E.H., Saunders, A.M., Strittmatter, W.J. et al. Gene dose of Apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families Science, 261 (1993),pp. 921-923
    [29]
    Cordy, J.M., Hussain, I., Dingwall, C. et al. Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 11735-11740
    [30]
    Cutler, R.G., Kelly, J., Storie, K. et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 2070-2075
    [31]
    De La Monte, S.M. Metabolic derangements mediate cognitive impairment and Alzheimer's disease: role of peripheral insulin-resistance diseases Panminerva Med., 54 (2012),pp. 171-178
    [32]
    DeKroon, R., Robinette, J.B., Hjelmeland, A.B. et al. Circ. Res., 99 (2006),pp. 829-836
    [33]
    Ditaranto-Desimone, K., Saito, M., Tekirian, T.L. et al. Neuronal endosomal/lysosomal membrane destabilization activates caspases and induces abnormal accumulation of the lipid secondary messenger ceramide Brain Res. Bull., 59 (2003),pp. 523-531
    [34]
    Ege, C., Lee, K.Y. Insertion of Alzheimer's Abeta 40 peptide into lipid monolayers Biophys. J., 87 (2004),pp. 1732-1740
    [35]
    Esch, F.S., Keim, P.S., Beattie, E.C. et al. Cleavage of amyloid beta peptide during constitutive processing of its precursor Science, 248 (1990),pp. 1122-1124
    [36]
    Fadeel, B., Xue, D. The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease Crit. Rev. Biochem. Mol. Biol., 44 (2009),pp. 264-277
    [37]
    Famer, D., Meaney, S., Mousavi, M. et al. Biochem. Biophys. Res. Commun., 359 (2007),pp. 46-50
    [38]
    Fantini, J., Yahi, N. Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases Expert Rev. Mol. Med., 1 (2010),p. e27
    [39]
    Farooqui, A.A., Ong, W.Y., Farooqui, T. Lipid mediators in the nucleus: their potential contribution to Alzheimer's disease Biochim. Biophys. Acta, 1801 (2010),pp. 906-916
    [40]
    Ferri, C.P., Prince, M., Brayne, C. et al. Global prevalence of dementia: a Delphi consensus study Lancet, 366 (2005),pp. 2112-2117
    [41]
    Fukunaga, S., Ueno, H., Yamaguchi, T. et al. GM1 cluster mediates formation of toxic Aß fibrils by providing hydrophobic environments Biochemistry, 51 (2012),pp. 8125-8131
    [42]
    Futerman, A.H., Riezman, H. The ins and outs of sphingolipid synthesis Trends Cell Biol., 15 (2005),pp. 312-318
    [43]
    Gamba, P., Testa, G., Sottero, B. et al. The link between altered cholesterol metabolism and Alzheimer's disease Ann. N. Y. Acad. Sci., 1259 (2012),pp. 54-64
    [44]
    Gill, J.M., Sattar, N. Ceramides: a new player in the inflammation-insulin resistance paradigm? Diabetologia, 52 (2009),pp. 2475-2477
    [45]
    Goodenowe, D.B., Cook, L.L., Liu, J. et al. Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer's disease and dementia J. Lipid Res., 48 (2007),pp. 2485-2498
    [46]
    Grimble, R.F. Dietary lipids and the inflammatory response Proc. Nutr. Soc., 57 (1998),pp. 535-542
    [47]
    Grimm, M.O.W., Grimm, H.S., Hartmann, T. Amyloid beta as a regulator of lipid homeostasis Trends Mol. Med., 13 (2007),pp. 337-344
    [48]
    Gruenberg, J. Lipids in endocytic membrane transport and sorting Curr. Opin. Cell Biol., 15 (2003),pp. 382-388
    [49]
    Guan, Z., Wang, Y., Cairns, N.J. et al. Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease J. Neuropathol. Exp. Neurol., 58 (1999),pp. 740-747
    [50]
    Gupta, V.B., Laws, S.M., Villemagne, V.L. et al. Plasma apolipoprotein E and Alzheimer disease risk Neurology, 76 (2011),pp. 1091-1098
    [51]
    Han, X. Potential mechanisms contributing to sulfatide depletion at the earliest clinically recognizable stage of Alzheimer's disease: a tale of shotgun lipidomics J. Neurochem., 103 (2007),pp. 171-178
    [52]
    Han, X., M Holtzman, D., , Kelley, J. et al. Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer's disease: potential role in disease pathogenesis J. Neurochem., 82 (2002),pp. 809-818
    [53]
    Han, X., M Holtzman, D., Plasmogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry J. Neurochem., 77 (2001),pp. 1168-1180
    [54]
    Hane, F., Drolle, E., Gaikwad, R. et al. Amyloid-beta aggregation on model lipid membranes: an atomic force microscopy study J. Alzheimers Dis., 26 (2011),pp. 485-494
    [55]
    Hatters, D.M., Peters-Libeu, C.A., Weisgraber, K.H. Engineering conformational destabilization into mouse apolipoprotein E. A model for a unique property of human apolipoprotein E4 J. Biol. Chem., 280 (2005),pp. 26477-26482
    [56]
    Heverin, M., Bogdanovic, N., Lütjohann, D. et al. Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease J. Lipid Res., 45 (2004),pp. 186-193
    [57]
    Heverin, M., Meaney, S., L, tjohann, D. et al. Crossing the barrier: net flux of 27-hydroxycholesterol into the human brain J. Lipid Res., 46 (2005),pp. 1047-1052
    [58]
    Holland, W.L., Summers, S.A. Endocr. Rev., 29 (2008),pp. 381-402
    [59]
    Holtzman, D.M. Role of apoE/Aβ interactions in Alzheimer's disease: insights from transgenic mouse models Mol. Psychiatry, 7 (2002),pp. 132-135
    [60]
    Holvoet, P. Relations between metabolic syndrome, oxidative stress and inflammation and cardiovascular disease Verh. K. Acad. Geneeskd. Belg., 70 (2008),pp. 193-219
    [61]
    Hsiao, J.H., Fu, Y., Hill, A.F. et al. Elevation in sphingomyelin synthase activity is associated with increases in amyloid-beta peptide generation PLoS ONE, 8 (2013),p. e74016
    [62]
    Hughes, T.M., Kuller, L.H., Lopez, O.L. et al. Markers of cholesterol metabolism in the brain show stronger associations with cerebrovascular disease than Alzheimer's disease J. Alzheimers Dis., 30 (2012),pp. 53-61
    [63]
    Igarashi, M., Ma, K., Kim, H.-W. et al. Disturbed choline plasmalogen and phospholipid fatty acid concentrations in Alzheimer's disease prefrontal cortex J. Alzheimers Dis., 24 (2011),pp. 507-517
    [64]
    Iqbal, K., Alonso, AdelC., Chen, S. et al. Tau pathology in Alzheimer disease and other tauopathies Biochim. Biophys. Acta, 1739 (2005),pp. 198-210
    [65]
    Iuliano, L., Micheletta, F., Natoli, S. et al. Measurement of oxysterols and α-tocopherol in plasma and tissue samples as indices of oxidant stress status Anal. Biochem., 312 (2003),pp. 217-223
    [66]
    Jenner, A.M., Lim, W.L.F., Ng, M.P.E. et al. Neuroscience, 169 (2010),pp. 109-115
    [67]
    Jenner, A.M., Ren, M., Rajendran, R. et al. Zinc supplementation inhibits lipid peroxidation and the development of atherosclerosis in rabbits fed a high cholesterol diet Free Radic. Biol. Med., 42 (2007),pp. 559-566
    [68]
    Ji, J., Zhang, L., Wang, P. et al. Saturated free fatty acid, palmitic acid, induces apoptosis in fetal hepatocytes in culture Exp. Toxicol. Pathol., 56 (2005),pp. 369-376
    [69]
    Kakio, A., Nishimoto, S., Kozutsumi, Y. et al. Formation of a membrane-active form of amyloid beta-protein in raft-like model membranes Biochem. Biophys. Res. Commun., 303 (2003),pp. 514-518
    [70]
    Kojro, E., Gimpl, G., Lammich, S. et al. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on alpha-secretase ADAM 10 Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 5815-5820
    [71]
    Kuo, Y.M., Emmerling, M.R., Bisgaier, C.L. et al. Elevated low-density lipoprotein in Alzheimer's disease correlates with brain abeta 1-42 levels Biochem. Biophys. Res. Commun., 252 (1998),pp. 711-715
    [72]
    Landman, N., Jeong, S.Y., Shin, S.Y. et al. Presenilin mutations linked to familial Alzheimer's disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 19524-19529
    [73]
    Lam, S., Shui, G. Lipidomics as a principal tool for advancing biomedical research J. Genet. Genomics, 40 (2013),pp. 375-390
    [74]
    Lam, S.M., Wang, Y., Duan, X. et al. The brain lipidomes of subcortical ischemic vascular dementia and mixed dementia Neurobiol. Aging. (2014)
    [75]
    Laws, S.M., Hone, E., Gandy, S. et al. J. Neurochem., 84 (2003),pp. 1215-1236
    [76]
    Lee, C.-Y.J., Huang, S.H., Jenner, A.M. et al. Free Radic. Biol. Med., 44 (2008),pp. 1314-1422
    [77]
    Lee, J.T., Xu, J., Lee, J.M. et al. Amyloid-beta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase–ceramide pathway J. Cell Biol., 164 (2004),pp. 123-131
    [78]
    Lemkul, J.A., Bevan, D.R. Lipid composition influences the release of Alzheimer's amyloid ß-peptide from membranes Protein Sci., 20 (2011),pp. 1530-1545
    [79]
    Lemkul, J.A., Bevan, D.R. Aggregation of Alzheimer's amyloid beta-peptide in biological membranes: a molecular dynamics study Biochemistry, 52 (2013),pp. 4971-4980
    [80]
    Leoni, V.
    [81]
    Leoni, V., Solomon, A., Kivipelto, M. Links between ApoE, brain cholesterol metabolism, tau and amyloid β-peptide in patients with cognitive impairment Biochem. Soc. Trans., 38 (2010),pp. 1021-1025
    [82]
    Li, J., Kanekiyo, T., Shinohara, M. et al. Differential regulation of amyloid-beta endocytic trafficking and lysosomal degradation by apolipoprotein E isoforms J. Biol. Chem., 287 (2012),pp. 44593-44601
    [83]
    Lim, W.L., Lam, S.M., Shui, G. et al. Effects of a high-fat, high-cholesterol diet on brain lipid profiles in apolipoprotein E epsilon3 and epsilon4 knock-in mice Neurobiol. Aging, 34 (2013),pp. 2217-2224
    [84]
    Lipina, C., Hundal, H.S. Sphingolipids: agents provocateurs in the pathogenesis of insulin resistance Diabetologia, 54 (2011),pp. 1596-1607
    [85]
    Lütjohann, D., Papassotiropoulos, A., Björkhem, I. et al. Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients J. Lipid Res., 41 (2000),pp. 195-198
    [86]
    Mahley, R.W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology Science, 240 (1988),pp. 622-630
    [87]
    Malaguarnera, M., Di Rosa, M., Nicoletti, F. et al. Molecular mechanisms involved in NAFLD progression J. Mol. Med. (Berl.), 87 (2009),pp. 679-695
    [88]
    Marquer, C., Devauges, V., Cossec, J.C. et al. Local cholesterol increase triggers amyloid precursor protein-BACE 1 clustering in lipid rafts and rapid endocytosis FASEB J., 25 (2011),pp. 1295-1305
    [89]
    Martins, I.J., Berger, T., Sharman, M.J. et al. Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease J. Neurochem., 111 (2009),pp. 1275-1308
    [90]
    Martins, I.J., Hone, E., Foster, J.K. et al. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease Mol. Psychiatry, 11 (2006),pp. 721-736
    [91]
    Martins, I.J., Lim, W.L., Wilson, A. et al. The acceleration of aging and Alzheimer's disease through the biological mechanisms behind obesity and type II diabetes Health, 5 (2013),pp. 913-920
    [92]
    Martins, I.J., Wilson, A.C., Lim, W.L.F. et al. Sirtuin 1 mediates the obesity induced risk of common degenerative disease: Alzheimer's disease, coronary artery disease and type 2 diabetes Health, 4 (2012),pp. 1448-1456
    [93]
    Martins, R.N., Clarnette, R., Fisher, C. et al. Neuroreport, 6 (1995),pp. 1513-1516
    [94]
    Marwarha, G., Raza, S., Prasanthi, J.R. et al. Gadd153 and NF-kappaB crosstalk regulates 27-hydroxycholesterol-induced increase in BACE1 and beta-amyloid production in human neuroblastoma SH-SY5Y cells PLoS ONE, 8 (2013),p. e70773
    [95]
    Mattson, M.P. Pathways towards and away from Alzheimer's disease Nature, 430 (2004),pp. 631-639
    [96]
    McLaurin, J., Franklin, T., Chakrabartty, A. et al. Phosphatidylinositol and inositol involvement in Alzheimer amyloid-beta fibril growth and arrest J. Mol. Biol., 278 (1998),pp. 183-194
    [97]
    Meaney, S., Heverin, M., Panzenboeck, U. et al. Novel route for elimination of brain oxysterols across the blood-brain barrier: conversion into 7alpha-hydroxy-3-oxo-4-cholestenoic acid J. Lipid Res., 48 (2007),pp. 944-951
    [98]
    Meikle, P.J., Christopher, M.J. Lipidomics is providing new insight into the metabolic syndrome and its sequelae Curr. Opin. Lipidol., 22 (2011),pp. 210-215
    [99]
    Merched, A., Xia, Y., Visvikis, S. et al. Decreased high-density lipoprotein cholesterol and serum apolipoprotein AI concentrations are highly correlated with the severity of Alzheimer's disease Neurobiol. Aging, 21 (2000),pp. 27-30
    [100]
    Mohmmad Abdul, H., Butterfield, D.A. Protection against amyloid beta-peptide (1-42)-induced loss of phospholipid asymmetry in synaptosomal membranes by tricyclodecan-9-xanthogenate (D609) and ferulic acid ethyl ester, implications for Alzheimer's disease Biochim. Biophys. Acta, 1741 (2005),pp. 140-148
    [101]
    Morishima-Kawashima, M., Han, X., Tanimura, Y. et al. Effects of human apolipoprotein E isoforms on the amyloid beta-protein concentration and lipid composition in brain low-density membrane domains J. Neurochem., 101 (2007),pp. 949-958
    [102]
    Nagao, K., Yanagita, T. Bioactive lipids in metabolic syndrome Prog. Lipid Res., 47 (2008),pp. 127-146
    [103]
    Nelson, T.J., Alkon, D.L. Oxidation of cholesterol by amyloid precursor protein and β-amyloid peptide J. Biol. Chem., 280 (2005),pp. 7377-7387
    [104]
    Nichols, B. Endocytosis of lipid-anchored proteins, excluding GEECs from the crowd J. Cell Biol., 186 (2009),pp. 457-459
    [105]
    Oma, S., Mawatari, S., Saito, K. et al. Changes in phospholipid composition of erythrocyte membrane in Alzheimer's disease Dement. Geriatr. Cogn. Dis. Extra, 2 (2012),pp. 298-303
    [106]
    Papassotiropoulos, A., Lütjohann, D., Bagli, M. et al. 24S-hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia J. Psychiatr. Res., 36 (2002),pp. 27-32
    [107]
    Patil, S., Sheng, L., Masserang, A. et al. Palmitic acid-treated astrocytes induce BACE1 upregulation and accumulation of C-terminal fragment of APP in primary cortical neurons Neurosci. Lett., 406 (2006),pp. 55-59
    [108]
    Petelska, A.D., Figaszewski, Z.A. The equilibria between monovalent ions and phosphatidylcholine monolayer at the air/water interface J. Membr. Biol., 246 (2013),pp. 467-471
    [109]
    Peters-Libeu, C.A., Newhouse, Y., Hall, S.C. et al. Apolipoprotein E*dipalmitoylphosphatidylcholine particles are ellipsoidal in solution J. Lipid Res., 48 (2007),pp. 1035-1044
    [110]
    Pichler, H., Riezman, H. Where sterols are required for endocytosis Biochim. Biophys. Acta, 1666 (2004),pp. 51-61
    [111]
    Poirier, J., Davignon, J. Apolipoprotein E polymorphism and Alzheimer's disease Lancet, 342 (1993),pp. 697-699
    [112]
    Puglielli, L., Ellis, B.C., Saunders, A.J. et al. Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis J. Biol. Chem., 278 (2003),pp. 19777-19783
    [113]
    Puppala, J., Siddapuram, S.P., Akka, J. et al. Genetics of nonalcoholic fatty liver disease: an overview J. Genet. Genomics, 40 (2013),pp. 15-22
    [114]
    Quehenberger, O., Armando, A.M., Brown, A.H. et al. Lipidomics reveals a remarkable diversity of lipids in human plasma J. Lipid Res., 51 (2010),pp. 3299-3305
    [115]
    Rall, S.C.J., Weisgraber, K.H., Mahley, R.W. Human apolipoprotein E J. Biol. Chem., 257 (1982),pp. 4171-4178
    [116]
    Refolo, L.M., Pappolla, M.A., Malester, B. et al. Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model Neurobiol. Dis., 7 (2000),pp. 321-331
    [117]
    Roher, A.E., Kuo, Y.M., Kokjohn, K.M. et al. Amyloid and lipids in the pathology of Alzheimer disease Amyloid, 6 (1999),pp. 136-145
    [118]
    Roses, A.D. Apolipoprotein E and Alzheimer's disease. A rapidly expanding field with medical and epidemiological consequences Ann. N. Y. Acad. Sci., 802 (1996),pp. 50-57
    [119]
    Sabate, R., Espargaro, A., Barbosa-Barros, L. et al. Effect of the surface charge of artificial model membranes on the aggregation of amyloid beta-peptide Biochimie, 94 (2012),pp. 1730-1738
    [120]
    Sanchez-Mejia, R.O., Newman, J.W., Toh, S. et al. Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer's disease Nat. Neurosci., 11 (2008),pp. 1311-1318
    [121]
    Satoi, H., Tomimoto, H., Ohtani, R. et al. Astroglial expression of ceramide in Alzheimer's disease brains: a role during neuronal apoptosis Neuroscience, 130 (2005),pp. 657-666
    [122]
    Schmitz-Peiffer, C. Targeting ceramide synthesis to reverse insulin resistance Diabetes, 59 (2010),pp. 2351-2353
    [123]
    Selkoe, D.J. Alzheimer's disease: genes, proteins, and therapy Physiol. Rev., 81 (2001),pp. 741-766
    [124]
    Shafaati, M., Marutle, A., Pettersson, H. et al. J. Lipid Res., 52 (2011),pp. 1004-1010
    [125]
    Shafaati, M., Solomon, A., Kivipelto, M. et al. Levels of ApoE in cerebrospinal fluid are correlated with Tau and 24S-hydroxycholesterol in patients with cognitive disorders Neurosci. Lett., 425 (2007),pp. 78-82
    [126]
    Sharman, M.J., Morici, M., Hone, E. et al. J. Alzheimers Dis., 21 (2010),pp. 403-409
    [127]
    Sharman, M.J., Shui, G., Fernandis, A.Z. et al. J. Alzheimers Dis., 20 (2010),pp. 105-111
    [128]
    Shie, F.-S., Jin, L.-W., Cook, D.G. et al. Diet-induced hypercholesterolemia enhances brain Aβ accumulation in transgenic mice Neuroreport, 13 (2002),pp. 455-459
    [129]
    Simons, M., Keller, P., Strooper, B.D. et al. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 6460-6464
    [130]
    Solomon, A., Leoni, V., Kivipelto, M. et al. Plasma levels of 24S-hydroxycholesterol reflect brain volumes in patients without objective cognitive impairment but not in those with Alzheimer's disease Neurosci. Lett., 462 (2009),pp. 89-93
    [131]
    Soreghan, B., Thomas, S.N., Yang, A.J. Aberrant sphingomyelin/ceramide metabolic-induced neuronal endosomal/lysosomal dysfunction: potential pathological consequences in age-related neurodegeneration Adv. Drug Deliv. Rev., 55 (2003),pp. 1515-1524
    [132]
    Soriano, S., Chyung, A.S., Chen, X. et al. Expression of beta-amyloid precursor protein-CD3 gamma chimeras to demonstrate the selective generation of amyloid beta(1-40) and amyloid beta(1-42) peptides within secretory and endocytic compartments J. Biol. Chem., 274 (1999),pp. 32295-32300
    [133]
    Sparks, D.L., Scheff, S.W., , Liu, H. et al. Induction of Alzheimer-like β-Amyloid immunoreactivity in the brains of rabbits with dietary cholesterol Exp. Neurol., 126 (1994),pp. 88-94
    [134]
    Stamler, C.J., Breznan, D., Neville, T.A. et al. J. Lipid Res., 41 (2000),pp. 1214-1221
    [135]
    Stokes, C.E., Hawthorne, J.N. Reduced phosphoinositide concentrations in anterior temporal cortex of Alzheimer-diseased brains J. Neurochem., 48 (1987),pp. 1018-1021
    [136]
    Strittmatter, W.J., Roses, A.D. Apolipoprotein E and Alzheimer's disease Annu. Rev. Neurosci., 19 (1996),pp. 53-77
    [137]
    Strittmatter, W.J., Saunders, A.M., Schmechel, D. et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease Proc. Natl. Acad. Sci. USA, 90 (1993),pp. 1977-1981
    [138]
    Takechi, R., Galloway, S., Pallebage-Gamarallage, M.M. et al. Dietary fats, cerebrovasculature and Alzheimer's disease risk Prog. Lipid Res., 49 (2010),pp. 159-170
    [139]
    Tamboli, I.Y., Tien, N.T., Walter, J. Sphingolipid storage impairs autophagic clearance of Alzheimer-associated proteins Autophagy, 7 (2011),pp. 645-646
    [140]
    Treusch, S., Hamamichi, S., Goodman, J.L. et al. Functional links between Abeta toxicity, endocytic trafficking, and Alzheimer's disease risk factors in yeast Science, 334 (2011),pp. 1241-1245
    [141]
    Tuppo, E.E., Arias, H.R. The role of inflammation in Alzheimer's disease Int. J. Biochem. Cell Biol., 37 (2005),pp. 289-305
    [142]
    Vaja, J., Schipper, H.M. Oxysterols, cholesterol homeostasis, and Alzheimer's disease J. Neurochem., 102 (2007),pp. 1727-1737
    [143]
    van Echten-Deckert, G., Walter, J. Sphingolipids: critical players in Alzheimer's disease Prog. Lipid Res., 51 (2012),pp. 378-393
    [144]
    Vargas, J., Alarcon, J.M., Rojas, E. Displacement currents associated with the insertion of Alzheimer disease amyloid beta-peptide into planar bilayer membranes Biophys. J., 79 (2000),pp. 934-944
    [145]
    Vassar, R., Bennett, B.O., Babu-Khan, S. et al. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE Science, 286 (1999),pp. 735-741
    [146]
    Verghese, P.B., Castellano, J.M., Garai, K. et al. ApoE influences amyloid-ß (Aß) clearance despite minimal apoE/Aß association in physiological conditions Proc. Natl. Acad. Sci. USA, 110 (2013),pp. E1807-E1816
    [147]
    Vetrivel, K.S., Barman, A., Chen, Y. et al. Loss of cleavage at beta'-site contributes to apparent increase in beta-amyloid peptide (Abeta) secretion by beta-secretase (BACE1)-glycosylphosphatidylinositol (GPI) processing of amyloid precursor protein J. Biol. Chem., 286 (2011),pp. 26166-26177
    [148]
    Wahrle, S., Das, P., Nyborg, A.C. et al. Cholesterol-dependent γ-secretase activity in buoyant cholesterol-rich membrane microdomains Neurobiol. Dis., 9 (2002),pp. 11-23
    [149]
    Wenk, M.R. The emerging field of lipidomics Nat. Rev. Drug Discov., 4 (2005),pp. 594-610
    [150]
    Wenk, M.R. Lipidomics: new tools and applications Cell, 143 (2010),pp. 888-895
    [151]
    Williams, T.L., Serpell, L.C. Membrane and surface interactions of Alzheimer's Abeta peptide–insights into the mechanism of cytotoxicity FEBS J., 278 (2011),pp. 3905-3917
    [152]
    Wood, P.L. Lipidomics of Alzheimer's disease: current status Alzheimers Res. Ther., 4 (2012),p. 5
    [153]
    Wyss-Coray, T., Rogers, J. Inflammation in Alzheimer disease‒a brief review of the basic science and clinical literature Cold Spring Harb. Perspect. Med., 2 (2012),p. a006346
    [154]
    Yaffe, K., Kanaya, A., Lindquist, K. et al. The metabolic syndrome, inflammation, and risk of cognitive decline JAMA, 292 (2004),pp. 2237-2242
    [155]
    Yao, Y., Chinnici, C., Tang, H. et al. Brain inflammation and oxidative stress in a transgenic mouse model of Alzheimer-like brain amyloidosis J. Neuroinflammation, 1 (2004),p. 21
    [156]
    Yu, C., Nwabuisi-Heath, E., Laxton, K. et al. Endocytic pathways mediating oligomeric Abeta42 neurotoxicity Mol. Neurodegener., 5 (2010),p. 19
    [157]
    Zannis, V.I., Breslow, J.L., Utermann, G. et al. Proposed nomenclature of apoE isoproteins, apoE genotypes, and phenotypes J. Lipid Res., 23 (1982),pp. 911-914
    [158]
    Zehmer, J.K., Huang, Y., Peng, G. et al. A role for lipid droplets in inter-membrane lipid traffic Proteomics, 9 (2009),pp. 914-921
    [159]
    Zhang, M. Endocytic mechanisms and drug discovery in neurodegenerative diseases Front. Biosci., 13 (2008),pp. 6086-6105
    [160]
    Zinser, E.G., Hartmann, T., Grimm, M.O.W. Amyloid beta-protein and lipid metabolism Biochim. Biophys. Acta, 1768 (2007),pp. 1991-2001
    [161]
    Zubenko, G.S., Stiffler, J.S., Hughes, H.B. et al. Reductions in brain phosphatidylinositol kinase activities in Alzheimer's disease Biol. Psychiatr., 45 (1999),pp. 731-736
    [162]
    Zuliani, G., Donnorso, M.P., Bosi, C. et al. Plasma 24S-hydroxycholesterol levels in elderly subjects with late onset Alzheimer's disease or vascular dementia: a case-control study BMC Neurol., 11 (2011),p. 121
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (47) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return