[1] |
Akashi, M., Takumi, T. The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1 Nat. Struct. Mol. Biol., 12 (2005),pp. 441-448
|
[2] |
Albrecht, U., Sun, Z.S., Eichele, G. et al. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light Cell, 91 (1997),pp. 1055-1064
|
[3] |
Ando, H., Yanagihara, H., Hayashi, Y. et al. Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue Endocrinology, 146 (2005),pp. 5631-5636
|
[4] |
Andrews, J.L., Zhang, X., McCarthy, J.J. et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 19090-19095
|
[5] |
Ang, J.E., Revell, V., Mann, A. et al. Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography-mass spectrometry metabolomic approach Chronobiol. Int., 29 (2012),pp. 868-881
|
[6] |
Arble, D.M., Bass, J., Laposky, A.D. et al. Circadian timing of food intake contributes to weight gain Obesity (Silver Spring), 17 (2009),pp. 2100-2102
|
[7] |
Asher, G., Gatfield, D., Stratmann, M. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation Cell, 134 (2008),pp. 317-328
|
[8] |
Balsalobre, A., Brown, S.A., Marcacci, L. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling Science, 289 (2000),pp. 2344-2347
|
[9] |
Berson, D.M., Dunn, F.A., Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock Science, 295 (2002),pp. 1070-1073
|
[10] |
Brown, D.L., Feskanich, D., Sanchez, B.N. et al. Rotating night shift work and the risk of ischemic stroke Am. J. Epidemiol., 169 (2009),pp. 1370-1377
|
[11] |
Bugge, A., Feng, D., Everett, L.J. et al. Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function Genes Dev., 26 (2012),pp. 657-667
|
[12] |
Bunger, M.K., Walisser, J.A., Sullivan, R. et al. Progressive arthropathy in mice with a targeted disruption of the Mop3/Bmal-1 locus Genesis, 41 (2005),pp. 122-132
|
[13] |
Bunger, M.K., Wilsbacher, L.D., Moran, S.M. et al. Mop3 is an essential component of the master circadian pacemaker in mammals Cell, 103 (2000),pp. 1009-1017
|
[14] |
Buxton, O.M., Cain, S.W., O'Connor, S.P. et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption Sci. Transl. Med., 4 (2012),p. 129ra43
|
[15] |
Caton, P.W., Kieswich, J., Yaqoob, M.M. et al. Diabetes Obes. Metab., 13 (2011),pp. 1097-1104
|
[16] |
Cho, H., Zhao, X., Hatori, M. et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta Nature, 485 (2012),pp. 123-127
|
[17] |
Chou, T.C., Scammell, T.E., Gooley, J.J. et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms J. Neurosci., 23 (2003),pp. 10691-10702
|
[18] |
Chua, E.C., Shui, G., Lee, I.T. et al. Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic phenotypes in humans Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 14468-14473
|
[19] |
Coomans, C.P., van den Berg, S.A., Lucassen, E.A. et al. The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity Diabetes, 62 (2013),pp. 1102-1108
|
[20] |
Crumbley, C., Wang, Y., Kojetin, D.J. et al. Characterization of the core mammalian clock component, NPAS2, as a REV-ERBalpha/RORalpha target gene J. Biol. Chem., 285 (2010),pp. 35386-35392
|
[21] |
Czeisler, C.A., Gooley, J.J. Sleep and circadian rhythms in humans Cold Spring Harb. Symp. Quant. Biol., 72 (2007),pp. 579-597
|
[22] |
Czeisler, C.A., Johnson, M.P., Duffy, J.F. et al. Exposure to bright light and darkness to treat physiologic maladaptation to night work N. Engl. J. Med., 322 (1990),pp. 1253-1259
|
[23] |
Czeisler, C.A., Klerman, E.B. Circadian and sleep-dependent regulation of hormone release in humans Recent Prog. Horm. Res., 54 (1999),pp. 97-130
|
[24] |
Dallmann, R., Viola, A.U., Tarokh, L. et al. The human circadian metabolome Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 2625-2629
|
[25] |
Damiola, F., Le Minh, N., Preitner, N. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus Genes Dev., 14 (2000),pp. 2950-2961
|
[26] |
De Bacquer, D., Van Risseghem, M., Clays, E. et al. Rotating shift work and the metabolic syndrome: a prospective study Int. J. Epidemiol., 38 (2009),pp. 848-854
|
[27] |
DeCoursey, P.J., Walker, J.K., Smith, S.A. A circadian pacemaker in free-living chipmunks: essential for survival? J. Comp. Physiol. A, 186 (2000),pp. 169-180
|
[28] |
Douris, N., Kojima, S., Pan, X. et al. Nocturnin regulates circadian trafficking of dietary lipid in intestinal enterocytes Curr. Biol., 21 (2011),pp. 1347-1355
|
[29] |
Draisma, H.H., Reijmers, T.H., Bobeldijk-Pastorova, I. et al. Similarities and differences in lipidomics profiles among healthy monozygotic twin pairs OMICS, 12 (2008),pp. 17-31
|
[30] |
Draisma, H.H., Reijmers, T.H., Meulman, J.J. et al. Hierarchical clustering analysis of blood plasma lipidomics profiles from mono- and dizygotic twin families Eur. J. Hum. Genet., 21 (2013),pp. 95-101
|
[31] |
Dudley, C.A., Erbel-Sieler, C., Estill, S.J. et al. Science, 301 (2003),pp. 379-383
|
[32] |
Eckel-Mahan, K.L., Patel, V.R., Mohney, R.P. et al. Coordination of the transcriptome and metabolome by the circadian clock Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 5541-5546
|
[33] |
Eide, E.J., Woolf, M.F., Kang, H. et al. Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation Mol. Cell Biol., 25 (2005),pp. 2795-2807
|
[34] |
Esquirol, Y., Bongard, V., Mabile, L. et al. Shift work and metabolic syndrome: respective impacts of job strain, physical activity, and dietary rhythms Chronobiol. Int., 26 (2009),pp. 544-559
|
[35] |
Feng, D., Liu, T., Sun, Z. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism Science, 331 (2011),pp. 1315-1319
|
[36] |
Finck, B.N., Gropler, M.C., Chen, Z. et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway Cell Metab., 4 (2006),pp. 199-210
|
[37] |
Fontaine, C., Dubois, G., Duguay, Y. et al. The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation J. Biol. Chem., 278 (2003),pp. 37672-37680
|
[38] |
Fukuhara, C., Tosini, G. Peripheral circadian oscillators and their rhythmic regulation Front. Biosci., 8 (2003),pp. d642-d651
|
[39] |
Gekakis, N., Staknis, D., Nguyen, H.B. et al. Role of the CLOCK protein in the mammalian circadian mechanism Science, 280 (1998),pp. 1564-1569
|
[40] |
Gerhart-Hines, Z., Feng, D., Emmett, M.J. et al. The nuclear receptor Rev-erbalpha controls circadian thermogenic plasticity Nature, 503 (2013),pp. 410-413
|
[41] |
Gervois, P., Chopin-Delannoy, S., Fadel, A. et al. Mol. Endocrinol., 13 (1999),pp. 400-409
|
[42] |
Gieger, C., Geistlinger, L., Altmaier, E. et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum PLoS Genet., 4 (2008),p. e1000282
|
[43] |
Godinho, S.I., Maywood, E.S., Shaw, L. et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period Science, 316 (2007),pp. 897-900
|
[44] |
Golombek, D.A., Rosenstein, R.E. Physiology of circadian entrainment Physiol. Rev., 90 (2010),pp. 1063-1102
|
[45] |
Gomez-Abellan, P., Hernandez-Morante, J.J., Lujan, J.A. et al. Clock genes are implicated in the human metabolic syndrome Int. J. Obes. (Lond), 32 (2008),pp. 121-128
|
[46] |
Gooley, J.J. Treatment of circadian rhythm sleep disorders with light Ann. Acad. Med. Singapore, 37 (2008),pp. 669-676
|
[47] |
Gooley, J.J., Lu, J., Chou, T.C. et al. Melanopsin in cells of origin of the retinohypothalamic tract Nat. Neurosci., 4 (2001),p. 1165
|
[48] |
Gooley, J.J., Schomer, A., Saper, C.B. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms Nat. Neurosci., 9 (2006),pp. 398-407
|
[49] |
Green, R.M., Tingay, S., Wang, Z.Y. et al. Plant Physiol., 129 (2002),pp. 576-584
|
[50] |
, Staknis, D., Weitz, C.J. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock Science, 286 (1999),pp. 768-771
|
[51] |
Grimaldi, B., Bellet, M.M., Katada, S. et al. PER2 controls lipid metabolism by direct regulation of PPARgamma Cell Metab., 12 (2010),pp. 509-520
|
[52] |
Hampton, S.M., Morgan, L.M., Lawrence, N. et al. Postprandial hormone and metabolic responses in simulated shift work J. Endocrinol., 151 (1996),pp. 259-267
|
[53] |
Hannibal, J. Roles of PACAP-containing retinal ganglion cells in circadian timing Int. Rev. Cytol., 251 (2006),pp. 1-39
|
[54] |
Hannibal, J., Hindersson, P., Knudsen, S.M. et al. The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract J. Neurosci., 22 (2002),p. RC191
|
[55] |
Hatanaka, F., Matsubara, C., Myung, J. et al. Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism Mol. Cell Biol., 30 (2010),pp. 5636-5648
|
[56] |
Hatori, M., Vollmers, C., Zarrinpar, A. et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet Cell Metab., 15 (2012),pp. 848-860
|
[57] |
Hattar, S., Liao, H.W., Takao, M. et al. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity Science, 295 (2002),pp. 1065-1070
|
[58] |
He, W., Barak, Y., Hevener, A. et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 15712-15717
|
[59] |
Horton, J.D., Goldstein, J.L., Brown, M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver J. Clin. Invest., 109 (2002),pp. 1125-1131
|
[60] |
Hughes, M.E., DiTacchio, L., Hayes, K.R. et al. Harmonics of circadian gene transcription in mammals PLoS Genet., 5 (2009),p. e1000442
|
[61] |
Hussain, M.M., Pan, X. Clock regulation of dietary lipid absorption Curr. Opin. Clin. Nutr. Metab. Care, 15 (2012),pp. 336-341
|
[62] |
Hussain, M.M., Rava, P., Walsh, M. et al. Multiple functions of microsomal triglyceride transfer protein Nutr. Metab. (Lond), 9 (2012),p. 14
|
[63] |
Jagannath, A., Butler, R., Godinho, S.I. et al. The CRTC1-SIK1 pathway regulates entrainment of the circadian clock Cell, 154 (2013),pp. 1100-1111
|
[64] |
Janszky, I., Ljung, R. Shifts to and from daylight saving time and incidence of myocardial infarction N. Engl. J. Med., 359 (2008),pp. 1966-1968
|
[65] |
Kamei, Y., Ohizumi, H., Fujitani, Y. et al. PPARgamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 12378-12383
|
[66] |
Karlsson, B., Alfredsson, L., Knutsson, A. et al. Total mortality and cause-specific mortality of Swedish shift- and dayworkers in the pulp and paper industry in 1952-2001 Scand. J. Work Environ. Health, 31 (2005),pp. 30-35
|
[67] |
Kasukawa, T., Sugimoto, M., Hida, A. et al. Human blood metabolite timetable indicates internal body time Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 15036-15041
|
[68] |
Kawachi, I., Colditz, G.A., Stampfer, M.J. et al. Prospective study of shift work and risk of coronary heart disease in women Circulation, 92 (1995),pp. 3178-3182
|
[69] |
Kohsaka, A., Laposky, A.D., Ramsey, K.M. et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice Cell Metab., 6 (2007),pp. 414-421
|
[70] |
Koike, N., Yoo, S.H., Huang, H.C. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals Science, 338 (2012),pp. 349-354
|
[71] |
Krauss, R.M., Zhu, H., Kaddurah-Daouk, R. Pharmacometabolomics of statin response Clin. Pharmacol. Ther., 94 (2013),pp. 562-565
|
[72] |
Kume, K., Zylka, M.J., Sriram, S. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop Cell, 98 (1999),pp. 193-205
|
[73] |
Lam, T.K., Schwartz, G.J., Rossetti, L. Hypothalamic sensing of fatty acids Nat. Neurosci., 8 (2005),pp. 579-584
|
[74] |
Lamia, K.A., Papp, S.J., Yu, R.T. et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor Nature, 480 (2011),pp. 552-556
|
[75] |
Lamia, K.A., Sachdeva, U.M., DiTacchio, L. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation Science, 326 (2009),pp. 437-440
|
[76] |
Lamia, K.A., Storch, K.F., Weitz, C.J. Physiological significance of a peripheral tissue circadian clock Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 15172-15177
|
[77] |
Lau, P., Fitzsimmons, R.L., Raichur, S. et al. The orphan nuclear receptor, RORalpha, regulates gene expression that controls lipid metabolism: staggerer (SG/SG) mice are resistant to diet-induced obesity J. Biol. Chem., 283 (2008),pp. 18411-18421
|
[78] |
Le Martelot, G., Claudel, T., Gatfield, D. et al. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis PLoS Biol., 7 (2009),p. e1000181
|
[79] |
Le Minh, N., Damiola, F., Tronche, F. et al. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators EMBO J., 20 (2001),pp. 7128-7136
|
[80] |
Lee, C., Etchegaray, J.P., Cagampang, F.R. et al. Posttranslational mechanisms regulate the mammalian circadian clock Cell, 107 (2001),pp. 855-867
|
[81] |
Lehmann, J.M., Moore, L.B., Smith-Oliver, T.A. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma) J. Biol. Chem., 270 (1995),pp. 12953-12956
|
[82] |
Lehrke, M., Lazar, M.A. The many faces of PPARgamma Cell, 123 (2005),pp. 993-999
|
[83] |
Levi, F., Schibler, U. Circadian rhythms: mechanisms and therapeutic implications Annu. Rev. Pharmacol. Toxicol., 47 (2007),pp. 593-628
|
[84] |
Li, M.D., Li, C.M., Wang, Z. The role of circadian clocks in metabolic disease Yale J. Biol. Med., 85 (2012),pp. 387-401
|
[85] |
Li, X., Zhang, S., Blander, G. et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR Mol. Cell, 28 (2007),pp. 91-106
|
[86] |
Liu, C., Li, S., Liu, T. et al. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism Nature, 447 (2007),pp. 477-481
|
[87] |
Liu, S., Brown, J.D., Stanya, K.J. et al. A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use Nature, 502 (2013),pp. 550-554
|
[88] |
Liu, S., Hatano, B., Zhao, M. et al. Role of peroxisome proliferator-activated receptor δ/β in hepatic metabolic regulation J. Biol. Chem., 286 (2011),pp. 1237-1247
|
[89] |
Lowrey, P.L., Takahashi, J.S. Genetics of circadian rhythms in Mammalian model organisms Adv. Genet., 74 (2011),pp. 175-230
|
[90] |
Lu, J., Zhang, Y.H., Chou, T.C. et al. Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation J. Neurosci., 21 (2001),pp. 4864-4874
|
[91] |
Lund, T.M., Torsvik, H., Falch, D. et al. Effect of morning versus evening intake of simvastatin on the serum cholesterol level in patients with coronary artery disease Am. J. Cardiol., 90 (2002),pp. 784-786
|
[92] |
MacLellan, J.D., Gerrits, M.F., Gowing, A. et al. Physiological increases in uncoupling protein 3 augment fatty acid oxidation and decrease reactive oxygen species production without uncoupling respiration in muscle cells Diabetes, 54 (2005),pp. 2343-2350
|
[93] |
Mamontova, A., Seguret-Mace, S., Esposito, B. et al. Severe atherosclerosis and hypoalphalipoproteinemia in the staggerer mouse, a mutant of the nuclear receptor RORalpha Circulation, 98 (1998),pp. 2738-2743
|
[94] |
Marcheva, B., Ramsey, K.M., Buhr, E.D. et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes Nature, 466 (2010),pp. 627-631
|
[95] |
McCarthy, J.J., Andrews, J.L., McDearmon, E.L. et al. Identification of the circadian transcriptome in adult mouse skeletal muscle Physiol. Genomics, 31 (2007),pp. 86-95
|
[96] |
Meijer, J.H., Schwartz, W.J. In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus J. Biol. Rhythms, 18 (2003),pp. 235-249
|
[97] |
Minami, Y., Kasukawa, T., Kakazu, Y. et al. Measurement of internal body time by blood metabolomics Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 9890-9895
|
[98] |
Moller-Levet, C.S., Archer, S.N., Bucca, G. et al. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome Proc. Natl. Acad. Sci. USA, 110 (2013),pp. E1132-E1141
|
[99] |
Monk, T.H., Buysse, D.J. Exposure to shift work as a risk factor for diabetes J. Biol. Rhythms, 28 (2013),pp. 356-359
|
[100] |
Moore, R.Y., Eichler, V.B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat Brain Res., 42 (1972),pp. 201-206
|
[101] |
Morgan, L., Arendt, J., Owens, D. et al. Effects of the endogenous clock and sleep time on melatonin, insulin, glucose and lipid metabolism J. Endocrinol., 157 (1998),pp. 443-451
|
[102] |
Morselli, L., Leproult, R., Balbo, M. et al. Role of sleep duration in the regulation of glucose metabolism and appetite Best Pract. Res. Clin. Endocrinol. Metab., 24 (2010),pp. 687-702
|
[103] |
Motosugi, Y., Ando, H., Ushijima, K. et al. Tissue-dependent alterations of the clock gene expression rhythms in leptin-resistant Zucker diabetic fatty rats Chronobiol. Int., 28 (2011),pp. 968-972
|
[104] |
Murakami, D.M., Horwitz, B.A., Fuller, C.A. Circadian rhythms of temperature and activity in obese and lean Zucker rats Am. J. Physiol., 269 (1995),pp. R1038-R1043
|
[105] |
Nakahata, Y., Kaluzova, M., Grimaldi, B. et al. Cell, 134 (2008),pp. 329-340
|
[106] |
O'Neil, D., Mendez-Figueroa, H., Mistretta, T.A. et al. Dysregulation of Npas2 leads to altered metabolic pathways in a murine knockout model Mol. Genet. Metab., 110 (2013),pp. 378-387
|
[107] |
Otway, D.T., Mantele, S., Bretschneider, S. et al. Rhythmic diurnal gene expression in human adipose tissue from individuals who are lean, overweight, and type 2 diabetic Diabetes, 60 (2011),pp. 1577-1581
|
[108] |
Ouyang, Y., Andersson, C.R., Kondo, T. et al. Resonating circadian clocks enhance fitness in cyanobacteria Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 8660-8664
|
[109] |
Pan, A., Schernhammer, E.S., Sun, Q. et al. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women PLoS Med., 8 (2011),p. e1001141
|
[110] |
Pan, X., Hussain, M.M. Clock is important for food and circadian regulation of macronutrient absorption in mice J. Lipid Res., 50 (2009),pp. 1800-1813
|
[111] |
Pan, X., Zhang, Y., Wang, L. et al. Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP Cell Metab., 12 (2010),pp. 174-186
|
[112] |
Panda, S., Antoch, M.P., Miller, B.H. et al. Coordinated transcription of key pathways in the mouse by the circadian clock Cell, 109 (2002),pp. 307-320
|
[113] |
Paschos, G.K., Ibrahim, S., Song, W.L. et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl Nat. Med., 18 (2012),pp. 1768-1777
|
[114] |
Portaluppi, F., Lemmer, B. Chronobiology and chronotherapy of ischemic heart disease Adv. Drug Deliv. Rev., 59 (2007),pp. 952-965
|
[115] |
Preitner, N., Damiola, F., Lopez-Molina, L. et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator Cell, 110 (2002),pp. 251-260
|
[116] |
Quehenberger, O., Armando, A.M., Brown, A.H. et al. Lipidomics reveals a remarkable diversity of lipids in human plasma J. Lipid Res., 51 (2010),pp. 3299-3305
|
[117] |
Reick, M., Garcia, J.A., Dudley, C. et al. NPAS2: an analog of clock operative in the mammalian forebrain Science, 293 (2001),pp. 506-509
|
[118] |
Rey, G., Cesbron, F., Rougemont, J. et al. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver PLoS Biol., 9 (2011),p. e1000595
|
[119] |
Ribeiro, D.C., Hampton, S.M., Morgan, L. et al. Altered postprandial hormone and metabolic responses in a simulated shift work environment J. Endocrinol., 158 (1998),pp. 305-310
|
[120] |
Rudic, R.D., McNamara, P., Curtis, A.M. et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis PLoS Biol., 2 (2004),p. e377
|
[121] |
Sadacca, L.A., Lamia, K.A., deLemos, A.S. et al. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice Diabetologia, 54 (2011),pp. 120-124
|
[122] |
Sahar, S., Sassone-Corsi, P. Regulation of metabolism: the circadian clock dictates the time Trends Endocrinol. Metab., 23 (2012),pp. 1-8
|
[123] |
Saito, Y., Yoshida, S., Nakaya, N. et al. Comparison between morning and evening doses of simvastatin in hyperlipidemic subjects. A double-blind comparative study Arterioscler. Thromb, 11 (1991),pp. 816-826
|
[124] |
Saper, C.B., Lu, J., Chou, T.C. et al. The hypothalamic integrator for circadian rhythms Trends Neurosci., 28 (2005),pp. 152-157
|
[125] |
Sato, T.K., Panda, S., Miraglia, L.J. et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock Neuron, 43 (2004),pp. 527-537
|
[126] |
Sato, T.K., Yamada, R.G., Ukai, H. et al. Feedback repression is required for mammalian circadian clock function Nat. Genet., 38 (2006),pp. 312-319
|
[127] |
Scheer, F.A., Czeisler, C.A. Melatonin, sleep, and circadian rhythms Sleep Med. Rev., 9 (2005),pp. 5-9
|
[128] |
Scheer, F.A., Hilton, M.F., Mantzoros, C.S. et al. Adverse metabolic and cardiovascular consequences of circadian misalignment Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 4453-4458
|
[129] |
Schwartz, W.J., Tavakoli-Nezhad, M., Lambert, C.M. et al. Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 17219-17224
|
[130] |
Schwer, B., Verdin, E. Conserved metabolic regulatory functions of sirtuins Cell Metab., 7 (2008),pp. 104-112
|
[131] |
Shea, S.A., Hilton, M.F., Orlova, C. et al. Independent circadian and sleep/wake regulation of adipokines and glucose in humans J. Clin. Endocrinol. Metab., 90 (2005),pp. 2537-2544
|
[132] |
Shimba, S., Ishii, N., Ohta, Y. et al. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 12071-12076
|
[133] |
Shimba, S., Ogawa, T., Hitosugi, S. et al. PLoS ONE, 6 (2011),p. e25231
|
[134] |
Shirogane, T., Jin, J., Ang, X.L. et al. J. Biol. Chem., 280 (2005),pp. 26863-26872
|
[135] |
Shostak, A., Meyer-Kovac, J., Oster, H. Circadian regulation of lipid mobilization in white adipose tissues Diabetes, 62 (2013),pp. 2195-2203
|
[136] |
Siepka, S.M., Yoo, S.H., Park, J. et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression Cell, 129 (2007),pp. 1011-1023
|
[137] |
So, A.Y., Bernal, T.U., Pillsbury, M.L. et al. Glucocorticoid regulation of the circadian clock modulates glucose homeostasis Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 17582-17587
|
[138] |
Solanes, G., Pedraza, N., Iglesias, R. et al. Functional relationship between MyoD and peroxisome proliferator-activated receptor-dependent regulatory pathways in the control of the human uncoupling protein-3 gene transcription Mol. Endocrinol., 17 (2003),pp. 1944-1958
|
[139] |
Solt, L.A., Wang, Y., Banerjee, S. et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists Nature, 485 (2012),pp. 62-68
|
[140] |
Sookoian, S., Gemma, C., Fernandez, G.T. et al. Effects of rotating shift work on biomarkers of metabolic syndrome and inflammation J. Intern. Med., 261 (2007),pp. 285-292
|
[141] |
Spiegel, K., Knutson, K., Leproult, R. et al. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes J. Appl. Physiol. (1985), 99 (2005),pp. 2008-2019
|
[142] |
Stubblefield, J.J., Terrien, J., Green, C.B. Nocturnin: at the crossroads of clocks and metabolism Trends Endocrinol. Metab., 23 (2012),pp. 326-333
|
[143] |
Takasu, N.N., Pendergast, J.S., Olivas, C.S. et al. PLoS ONE, 8 (2013),p. e64333
|
[144] |
Takeda, Y., Kang, H.S., Angers, M. et al. Nucleic Acids Res., 39 (2011),pp. 4769-4782
|
[145] |
Turek, F.W., Joshu, C., Kohsaka, A. et al. Obesity and metabolic syndrome in circadian Clock mutant mice Science, 308 (2005),pp. 1043-1045
|
[146] |
Ueda, H.R., Chen, W., Adachi, A. et al. A transcription factor response element for gene expression during circadian night Nature, 418 (2002),pp. 534-539
|
[147] |
Ueda, H.R., Chen, W., Minami, Y. et al. Molecular-timetable methods for detection of body time and rhythm disorders from single-time-point genome-wide expression profiles Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 11227-11232
|
[148] |
Um, J.H., Yang, S., Yamazaki, S. et al. Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2 J. Biol. Chem., 282 (2007),pp. 20794-20798
|
[149] |
van der Spek, R., Kreier, F., Fliers, E. et al. Circadian rhythms in white adipose tissue Prog. Brain Res., 199 (2012),pp. 183-201
|
[150] |
Wallace, A., Chinn, D., Rubin, G. Taking simvastatin in the morning compared with in the evening: randomised controlled trial BMJ, 327 (2003),p. 788
|
[151] |
Wenk, M.R. Lipidomics: new tools and applications Cell, 143 (2010),pp. 888-895
|
[152] |
, Bogan, R.K., Wyatt, J.K. Shift work and the assessment and management of shift work disorder (SWD) Sleep Med. Rev., 17 (2013),pp. 41-54
|
[153] |
Wu, X., Wiater, M.F., Ritter, S. NPAS2 deletion impairs responses to restricted feeding but not to metabolic challenges Physiol. Behav., 99 (2010),pp. 466-471
|
[154] |
Yamazaki, S., Kerbeshian, M.C., Hocker, C.G. et al. J. Neurosci., 18 (1998),pp. 10709-10723
|
[155] |
Yamazaki, S., Numano, R., Abe, M. et al. Resetting central and peripheral circadian oscillators in transgenic rats Science, 288 (2000),pp. 682-685
|
[156] |
Yan, J., Wang, H., Liu, Y. et al. Analysis of gene regulatory networks in the mammalian circadian rhythm PLoS Comput. Biol., 4 (2008),p. e1000193
|
[157] |
Yang, X., Downes, M., Yu, R.T. et al. Nuclear receptor expression links the circadian clock to metabolism Cell, 126 (2006),pp. 801-810
|
[158] |
Yoo, S.H., Mohawk, J.A., Siepka, S.M. et al. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm Cell, 152 (2013),pp. 1091-1105
|
[159] |
Yoo, S.H., Yamazaki, S., Lowrey, P.L. et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 5339-5346
|
[160] |
Zheng, B., Albrecht, U., Kaasik, K. et al. Cell, 105 (2001),pp. 683-694
|
[161] |
Zhu, L.L., Zhou, Q., Yan, X.F. et al. Optimal time to take once-daily oral medications in clinical practice Int. J. Clin. Pract., 62 (2008),pp. 1560-1571
|