5.9
CiteScore
5.9
Impact Factor
Volume 41 Issue 5
May  2014
Turn off MathJax
Article Contents

Diurnal Regulation of Lipid Metabolism and Applications of Circadian Lipidomics

doi: 10.1016/j.jgg.2014.04.001
More Information
  • Corresponding author: E-mail address: joshua.gooley@duke-nus.edu.sg (Joshua J. Gooley)
  • Received Date: 2014-01-02
  • Accepted Date: 2014-04-10
  • Rev Recd Date: 2014-04-10
  • Available Online: 2014-04-21
  • Publish Date: 2014-05-20
  • The circadian timing system plays a key role in orchestrating lipid metabolism. In concert with the solar cycle, the circadian system ensures that daily rhythms in lipid absorption, storage, and transport are temporally coordinated with rest-activity and feeding cycles. At the cellular level, genes involved in lipid synthesis and fatty acid oxidation are rhythmically activated and repressed by core clock proteins in a tissue-specific manner. Consequently, loss of clock gene function or misalignment of circadian rhythms with feeding cycles (e.g., in shift work) results in impaired lipid homeostasis. Herein, we review recent progress in circadian rhythms research using lipidomics, i.e., large-scale profiling of lipid metabolites, to characterize circadian-regulated lipid pathways in mammals. In mice, novel regulatory circuits involved in fatty acid metabolism have been identified in adipose tissue, liver, and muscle. Extensive diversity in circadian regulation of plasma lipids has also been revealed in humans using lipidomics and other metabolomics approaches. In future studies, lipidomics platforms will be increasingly used to better understand the effects of genetic variation, shift work, food intake, and drugs on circadian-regulated lipid pathways and metabolic health.
  • loading
  • [1]
    Akashi, M., Takumi, T. The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1 Nat. Struct. Mol. Biol., 12 (2005),pp. 441-448
    [2]
    Albrecht, U., Sun, Z.S., Eichele, G. et al. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light Cell, 91 (1997),pp. 1055-1064
    [3]
    Ando, H., Yanagihara, H., Hayashi, Y. et al. Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue Endocrinology, 146 (2005),pp. 5631-5636
    [4]
    Andrews, J.L., Zhang, X., McCarthy, J.J. et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 19090-19095
    [5]
    Ang, J.E., Revell, V., Mann, A. et al. Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography-mass spectrometry metabolomic approach Chronobiol. Int., 29 (2012),pp. 868-881
    [6]
    Arble, D.M., Bass, J., Laposky, A.D. et al. Circadian timing of food intake contributes to weight gain Obesity (Silver Spring), 17 (2009),pp. 2100-2102
    [7]
    Asher, G., Gatfield, D., Stratmann, M. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation Cell, 134 (2008),pp. 317-328
    [8]
    Balsalobre, A., Brown, S.A., Marcacci, L. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling Science, 289 (2000),pp. 2344-2347
    [9]
    Berson, D.M., Dunn, F.A., Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock Science, 295 (2002),pp. 1070-1073
    [10]
    Brown, D.L., Feskanich, D., Sanchez, B.N. et al. Rotating night shift work and the risk of ischemic stroke Am. J. Epidemiol., 169 (2009),pp. 1370-1377
    [11]
    Bugge, A., Feng, D., Everett, L.J. et al. Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function Genes Dev., 26 (2012),pp. 657-667
    [12]
    Bunger, M.K., Walisser, J.A., Sullivan, R. et al. Progressive arthropathy in mice with a targeted disruption of the Mop3/Bmal-1 locus Genesis, 41 (2005),pp. 122-132
    [13]
    Bunger, M.K., Wilsbacher, L.D., Moran, S.M. et al. Mop3 is an essential component of the master circadian pacemaker in mammals Cell, 103 (2000),pp. 1009-1017
    [14]
    Buxton, O.M., Cain, S.W., O'Connor, S.P. et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption Sci. Transl. Med., 4 (2012),p. 129ra43
    [15]
    Caton, P.W., Kieswich, J., Yaqoob, M.M. et al. Diabetes Obes. Metab., 13 (2011),pp. 1097-1104
    [16]
    Cho, H., Zhao, X., Hatori, M. et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta Nature, 485 (2012),pp. 123-127
    [17]
    Chou, T.C., Scammell, T.E., Gooley, J.J. et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms J. Neurosci., 23 (2003),pp. 10691-10702
    [18]
    Chua, E.C., Shui, G., Lee, I.T. et al. Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic phenotypes in humans Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 14468-14473
    [19]
    Coomans, C.P., van den Berg, S.A., Lucassen, E.A. et al. The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity Diabetes, 62 (2013),pp. 1102-1108
    [20]
    Crumbley, C., Wang, Y., Kojetin, D.J. et al. Characterization of the core mammalian clock component, NPAS2, as a REV-ERBalpha/RORalpha target gene J. Biol. Chem., 285 (2010),pp. 35386-35392
    [21]
    Czeisler, C.A., Gooley, J.J. Sleep and circadian rhythms in humans Cold Spring Harb. Symp. Quant. Biol., 72 (2007),pp. 579-597
    [22]
    Czeisler, C.A., Johnson, M.P., Duffy, J.F. et al. Exposure to bright light and darkness to treat physiologic maladaptation to night work N. Engl. J. Med., 322 (1990),pp. 1253-1259
    [23]
    Czeisler, C.A., Klerman, E.B. Circadian and sleep-dependent regulation of hormone release in humans Recent Prog. Horm. Res., 54 (1999),pp. 97-130
    [24]
    Dallmann, R., Viola, A.U., Tarokh, L. et al. The human circadian metabolome Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 2625-2629
    [25]
    Damiola, F., Le Minh, N., Preitner, N. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus Genes Dev., 14 (2000),pp. 2950-2961
    [26]
    De Bacquer, D., Van Risseghem, M., Clays, E. et al. Rotating shift work and the metabolic syndrome: a prospective study Int. J. Epidemiol., 38 (2009),pp. 848-854
    [27]
    DeCoursey, P.J., Walker, J.K., Smith, S.A. A circadian pacemaker in free-living chipmunks: essential for survival? J. Comp. Physiol. A, 186 (2000),pp. 169-180
    [28]
    Douris, N., Kojima, S., Pan, X. et al. Nocturnin regulates circadian trafficking of dietary lipid in intestinal enterocytes Curr. Biol., 21 (2011),pp. 1347-1355
    [29]
    Draisma, H.H., Reijmers, T.H., Bobeldijk-Pastorova, I. et al. Similarities and differences in lipidomics profiles among healthy monozygotic twin pairs OMICS, 12 (2008),pp. 17-31
    [30]
    Draisma, H.H., Reijmers, T.H., Meulman, J.J. et al. Hierarchical clustering analysis of blood plasma lipidomics profiles from mono- and dizygotic twin families Eur. J. Hum. Genet., 21 (2013),pp. 95-101
    [31]
    Dudley, C.A., Erbel-Sieler, C., Estill, S.J. et al. Science, 301 (2003),pp. 379-383
    [32]
    Eckel-Mahan, K.L., Patel, V.R., Mohney, R.P. et al. Coordination of the transcriptome and metabolome by the circadian clock Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 5541-5546
    [33]
    Eide, E.J., Woolf, M.F., Kang, H. et al. Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation Mol. Cell Biol., 25 (2005),pp. 2795-2807
    [34]
    Esquirol, Y., Bongard, V., Mabile, L. et al. Shift work and metabolic syndrome: respective impacts of job strain, physical activity, and dietary rhythms Chronobiol. Int., 26 (2009),pp. 544-559
    [35]
    Feng, D., Liu, T., Sun, Z. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism Science, 331 (2011),pp. 1315-1319
    [36]
    Finck, B.N., Gropler, M.C., Chen, Z. et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway Cell Metab., 4 (2006),pp. 199-210
    [37]
    Fontaine, C., Dubois, G., Duguay, Y. et al. The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation J. Biol. Chem., 278 (2003),pp. 37672-37680
    [38]
    Fukuhara, C., Tosini, G. Peripheral circadian oscillators and their rhythmic regulation Front. Biosci., 8 (2003),pp. d642-d651
    [39]
    Gekakis, N., Staknis, D., Nguyen, H.B. et al. Role of the CLOCK protein in the mammalian circadian mechanism Science, 280 (1998),pp. 1564-1569
    [40]
    Gerhart-Hines, Z., Feng, D., Emmett, M.J. et al. The nuclear receptor Rev-erbalpha controls circadian thermogenic plasticity Nature, 503 (2013),pp. 410-413
    [41]
    Gervois, P., Chopin-Delannoy, S., Fadel, A. et al. Mol. Endocrinol., 13 (1999),pp. 400-409
    [42]
    Gieger, C., Geistlinger, L., Altmaier, E. et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum PLoS Genet., 4 (2008),p. e1000282
    [43]
    Godinho, S.I., Maywood, E.S., Shaw, L. et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period Science, 316 (2007),pp. 897-900
    [44]
    Golombek, D.A., Rosenstein, R.E. Physiology of circadian entrainment Physiol. Rev., 90 (2010),pp. 1063-1102
    [45]
    Gomez-Abellan, P., Hernandez-Morante, J.J., Lujan, J.A. et al. Clock genes are implicated in the human metabolic syndrome Int. J. Obes. (Lond), 32 (2008),pp. 121-128
    [46]
    Gooley, J.J. Treatment of circadian rhythm sleep disorders with light Ann. Acad. Med. Singapore, 37 (2008),pp. 669-676
    [47]
    Gooley, J.J., Lu, J., Chou, T.C. et al. Melanopsin in cells of origin of the retinohypothalamic tract Nat. Neurosci., 4 (2001),p. 1165
    [48]
    Gooley, J.J., Schomer, A., Saper, C.B. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms Nat. Neurosci., 9 (2006),pp. 398-407
    [49]
    Green, R.M., Tingay, S., Wang, Z.Y. et al. Plant Physiol., 129 (2002),pp. 576-584
    [50]
    , Staknis, D., Weitz, C.J. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock Science, 286 (1999),pp. 768-771
    [51]
    Grimaldi, B., Bellet, M.M., Katada, S. et al. PER2 controls lipid metabolism by direct regulation of PPARgamma Cell Metab., 12 (2010),pp. 509-520
    [52]
    Hampton, S.M., Morgan, L.M., Lawrence, N. et al. Postprandial hormone and metabolic responses in simulated shift work J. Endocrinol., 151 (1996),pp. 259-267
    [53]
    Hannibal, J. Roles of PACAP-containing retinal ganglion cells in circadian timing Int. Rev. Cytol., 251 (2006),pp. 1-39
    [54]
    Hannibal, J., Hindersson, P., Knudsen, S.M. et al. The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract J. Neurosci., 22 (2002),p. RC191
    [55]
    Hatanaka, F., Matsubara, C., Myung, J. et al. Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism Mol. Cell Biol., 30 (2010),pp. 5636-5648
    [56]
    Hatori, M., Vollmers, C., Zarrinpar, A. et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet Cell Metab., 15 (2012),pp. 848-860
    [57]
    Hattar, S., Liao, H.W., Takao, M. et al. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity Science, 295 (2002),pp. 1065-1070
    [58]
    He, W., Barak, Y., Hevener, A. et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 15712-15717
    [59]
    Horton, J.D., Goldstein, J.L., Brown, M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver J. Clin. Invest., 109 (2002),pp. 1125-1131
    [60]
    Hughes, M.E., DiTacchio, L., Hayes, K.R. et al. Harmonics of circadian gene transcription in mammals PLoS Genet., 5 (2009),p. e1000442
    [61]
    Hussain, M.M., Pan, X. Clock regulation of dietary lipid absorption Curr. Opin. Clin. Nutr. Metab. Care, 15 (2012),pp. 336-341
    [62]
    Hussain, M.M., Rava, P., Walsh, M. et al. Multiple functions of microsomal triglyceride transfer protein Nutr. Metab. (Lond), 9 (2012),p. 14
    [63]
    Jagannath, A., Butler, R., Godinho, S.I. et al. The CRTC1-SIK1 pathway regulates entrainment of the circadian clock Cell, 154 (2013),pp. 1100-1111
    [64]
    Janszky, I., Ljung, R. Shifts to and from daylight saving time and incidence of myocardial infarction N. Engl. J. Med., 359 (2008),pp. 1966-1968
    [65]
    Kamei, Y., Ohizumi, H., Fujitani, Y. et al. PPARgamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 12378-12383
    [66]
    Karlsson, B., Alfredsson, L., Knutsson, A. et al. Total mortality and cause-specific mortality of Swedish shift- and dayworkers in the pulp and paper industry in 1952-2001 Scand. J. Work Environ. Health, 31 (2005),pp. 30-35
    [67]
    Kasukawa, T., Sugimoto, M., Hida, A. et al. Human blood metabolite timetable indicates internal body time Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 15036-15041
    [68]
    Kawachi, I., Colditz, G.A., Stampfer, M.J. et al. Prospective study of shift work and risk of coronary heart disease in women Circulation, 92 (1995),pp. 3178-3182
    [69]
    Kohsaka, A., Laposky, A.D., Ramsey, K.M. et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice Cell Metab., 6 (2007),pp. 414-421
    [70]
    Koike, N., Yoo, S.H., Huang, H.C. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals Science, 338 (2012),pp. 349-354
    [71]
    Krauss, R.M., Zhu, H., Kaddurah-Daouk, R. Pharmacometabolomics of statin response Clin. Pharmacol. Ther., 94 (2013),pp. 562-565
    [72]
    Kume, K., Zylka, M.J., Sriram, S. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop Cell, 98 (1999),pp. 193-205
    [73]
    Lam, T.K., Schwartz, G.J., Rossetti, L. Hypothalamic sensing of fatty acids Nat. Neurosci., 8 (2005),pp. 579-584
    [74]
    Lamia, K.A., Papp, S.J., Yu, R.T. et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor Nature, 480 (2011),pp. 552-556
    [75]
    Lamia, K.A., Sachdeva, U.M., DiTacchio, L. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation Science, 326 (2009),pp. 437-440
    [76]
    Lamia, K.A., Storch, K.F., Weitz, C.J. Physiological significance of a peripheral tissue circadian clock Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 15172-15177
    [77]
    Lau, P., Fitzsimmons, R.L., Raichur, S. et al. The orphan nuclear receptor, RORalpha, regulates gene expression that controls lipid metabolism: staggerer (SG/SG) mice are resistant to diet-induced obesity J. Biol. Chem., 283 (2008),pp. 18411-18421
    [78]
    Le Martelot, G., Claudel, T., Gatfield, D. et al. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis PLoS Biol., 7 (2009),p. e1000181
    [79]
    Le Minh, N., Damiola, F., Tronche, F. et al. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators EMBO J., 20 (2001),pp. 7128-7136
    [80]
    Lee, C., Etchegaray, J.P., Cagampang, F.R. et al. Posttranslational mechanisms regulate the mammalian circadian clock Cell, 107 (2001),pp. 855-867
    [81]
    Lehmann, J.M., Moore, L.B., Smith-Oliver, T.A. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma) J. Biol. Chem., 270 (1995),pp. 12953-12956
    [82]
    Lehrke, M., Lazar, M.A. The many faces of PPARgamma Cell, 123 (2005),pp. 993-999
    [83]
    Levi, F., Schibler, U. Circadian rhythms: mechanisms and therapeutic implications Annu. Rev. Pharmacol. Toxicol., 47 (2007),pp. 593-628
    [84]
    Li, M.D., Li, C.M., Wang, Z. The role of circadian clocks in metabolic disease Yale J. Biol. Med., 85 (2012),pp. 387-401
    [85]
    Li, X., Zhang, S., Blander, G. et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR Mol. Cell, 28 (2007),pp. 91-106
    [86]
    Liu, C., Li, S., Liu, T. et al. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism Nature, 447 (2007),pp. 477-481
    [87]
    Liu, S., Brown, J.D., Stanya, K.J. et al. A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use Nature, 502 (2013),pp. 550-554
    [88]
    Liu, S., Hatano, B., Zhao, M. et al. Role of peroxisome proliferator-activated receptor δ/β in hepatic metabolic regulation J. Biol. Chem., 286 (2011),pp. 1237-1247
    [89]
    Lowrey, P.L., Takahashi, J.S. Genetics of circadian rhythms in Mammalian model organisms Adv. Genet., 74 (2011),pp. 175-230
    [90]
    Lu, J., Zhang, Y.H., Chou, T.C. et al. Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation J. Neurosci., 21 (2001),pp. 4864-4874
    [91]
    Lund, T.M., Torsvik, H., Falch, D. et al. Effect of morning versus evening intake of simvastatin on the serum cholesterol level in patients with coronary artery disease Am. J. Cardiol., 90 (2002),pp. 784-786
    [92]
    MacLellan, J.D., Gerrits, M.F., Gowing, A. et al. Physiological increases in uncoupling protein 3 augment fatty acid oxidation and decrease reactive oxygen species production without uncoupling respiration in muscle cells Diabetes, 54 (2005),pp. 2343-2350
    [93]
    Mamontova, A., Seguret-Mace, S., Esposito, B. et al. Severe atherosclerosis and hypoalphalipoproteinemia in the staggerer mouse, a mutant of the nuclear receptor RORalpha Circulation, 98 (1998),pp. 2738-2743
    [94]
    Marcheva, B., Ramsey, K.M., Buhr, E.D. et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes Nature, 466 (2010),pp. 627-631
    [95]
    McCarthy, J.J., Andrews, J.L., McDearmon, E.L. et al. Identification of the circadian transcriptome in adult mouse skeletal muscle Physiol. Genomics, 31 (2007),pp. 86-95
    [96]
    Meijer, J.H., Schwartz, W.J. In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus J. Biol. Rhythms, 18 (2003),pp. 235-249
    [97]
    Minami, Y., Kasukawa, T., Kakazu, Y. et al. Measurement of internal body time by blood metabolomics Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 9890-9895
    [98]
    Moller-Levet, C.S., Archer, S.N., Bucca, G. et al. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome Proc. Natl. Acad. Sci. USA, 110 (2013),pp. E1132-E1141
    [99]
    Monk, T.H., Buysse, D.J. Exposure to shift work as a risk factor for diabetes J. Biol. Rhythms, 28 (2013),pp. 356-359
    [100]
    Moore, R.Y., Eichler, V.B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat Brain Res., 42 (1972),pp. 201-206
    [101]
    Morgan, L., Arendt, J., Owens, D. et al. Effects of the endogenous clock and sleep time on melatonin, insulin, glucose and lipid metabolism J. Endocrinol., 157 (1998),pp. 443-451
    [102]
    Morselli, L., Leproult, R., Balbo, M. et al. Role of sleep duration in the regulation of glucose metabolism and appetite Best Pract. Res. Clin. Endocrinol. Metab., 24 (2010),pp. 687-702
    [103]
    Motosugi, Y., Ando, H., Ushijima, K. et al. Tissue-dependent alterations of the clock gene expression rhythms in leptin-resistant Zucker diabetic fatty rats Chronobiol. Int., 28 (2011),pp. 968-972
    [104]
    Murakami, D.M., Horwitz, B.A., Fuller, C.A. Circadian rhythms of temperature and activity in obese and lean Zucker rats Am. J. Physiol., 269 (1995),pp. R1038-R1043
    [105]
    Nakahata, Y., Kaluzova, M., Grimaldi, B. et al. Cell, 134 (2008),pp. 329-340
    [106]
    O'Neil, D., Mendez-Figueroa, H., Mistretta, T.A. et al. Dysregulation of Npas2 leads to altered metabolic pathways in a murine knockout model Mol. Genet. Metab., 110 (2013),pp. 378-387
    [107]
    Otway, D.T., Mantele, S., Bretschneider, S. et al. Rhythmic diurnal gene expression in human adipose tissue from individuals who are lean, overweight, and type 2 diabetic Diabetes, 60 (2011),pp. 1577-1581
    [108]
    Ouyang, Y., Andersson, C.R., Kondo, T. et al. Resonating circadian clocks enhance fitness in cyanobacteria Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 8660-8664
    [109]
    Pan, A., Schernhammer, E.S., Sun, Q. et al. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women PLoS Med., 8 (2011),p. e1001141
    [110]
    Pan, X., Hussain, M.M. Clock is important for food and circadian regulation of macronutrient absorption in mice J. Lipid Res., 50 (2009),pp. 1800-1813
    [111]
    Pan, X., Zhang, Y., Wang, L. et al. Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP Cell Metab., 12 (2010),pp. 174-186
    [112]
    Panda, S., Antoch, M.P., Miller, B.H. et al. Coordinated transcription of key pathways in the mouse by the circadian clock Cell, 109 (2002),pp. 307-320
    [113]
    Paschos, G.K., Ibrahim, S., Song, W.L. et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl Nat. Med., 18 (2012),pp. 1768-1777
    [114]
    Portaluppi, F., Lemmer, B. Chronobiology and chronotherapy of ischemic heart disease Adv. Drug Deliv. Rev., 59 (2007),pp. 952-965
    [115]
    Preitner, N., Damiola, F., Lopez-Molina, L. et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator Cell, 110 (2002),pp. 251-260
    [116]
    Quehenberger, O., Armando, A.M., Brown, A.H. et al. Lipidomics reveals a remarkable diversity of lipids in human plasma J. Lipid Res., 51 (2010),pp. 3299-3305
    [117]
    Reick, M., Garcia, J.A., Dudley, C. et al. NPAS2: an analog of clock operative in the mammalian forebrain Science, 293 (2001),pp. 506-509
    [118]
    Rey, G., Cesbron, F., Rougemont, J. et al. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver PLoS Biol., 9 (2011),p. e1000595
    [119]
    Ribeiro, D.C., Hampton, S.M., Morgan, L. et al. Altered postprandial hormone and metabolic responses in a simulated shift work environment J. Endocrinol., 158 (1998),pp. 305-310
    [120]
    Rudic, R.D., McNamara, P., Curtis, A.M. et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis PLoS Biol., 2 (2004),p. e377
    [121]
    Sadacca, L.A., Lamia, K.A., deLemos, A.S. et al. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice Diabetologia, 54 (2011),pp. 120-124
    [122]
    Sahar, S., Sassone-Corsi, P. Regulation of metabolism: the circadian clock dictates the time Trends Endocrinol. Metab., 23 (2012),pp. 1-8
    [123]
    Saito, Y., Yoshida, S., Nakaya, N. et al. Comparison between morning and evening doses of simvastatin in hyperlipidemic subjects. A double-blind comparative study Arterioscler. Thromb, 11 (1991),pp. 816-826
    [124]
    Saper, C.B., Lu, J., Chou, T.C. et al. The hypothalamic integrator for circadian rhythms Trends Neurosci., 28 (2005),pp. 152-157
    [125]
    Sato, T.K., Panda, S., Miraglia, L.J. et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock Neuron, 43 (2004),pp. 527-537
    [126]
    Sato, T.K., Yamada, R.G., Ukai, H. et al. Feedback repression is required for mammalian circadian clock function Nat. Genet., 38 (2006),pp. 312-319
    [127]
    Scheer, F.A., Czeisler, C.A. Melatonin, sleep, and circadian rhythms Sleep Med. Rev., 9 (2005),pp. 5-9
    [128]
    Scheer, F.A., Hilton, M.F., Mantzoros, C.S. et al. Adverse metabolic and cardiovascular consequences of circadian misalignment Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 4453-4458
    [129]
    Schwartz, W.J., Tavakoli-Nezhad, M., Lambert, C.M. et al. Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 17219-17224
    [130]
    Schwer, B., Verdin, E. Conserved metabolic regulatory functions of sirtuins Cell Metab., 7 (2008),pp. 104-112
    [131]
    Shea, S.A., Hilton, M.F., Orlova, C. et al. Independent circadian and sleep/wake regulation of adipokines and glucose in humans J. Clin. Endocrinol. Metab., 90 (2005),pp. 2537-2544
    [132]
    Shimba, S., Ishii, N., Ohta, Y. et al. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 12071-12076
    [133]
    Shimba, S., Ogawa, T., Hitosugi, S. et al. PLoS ONE, 6 (2011),p. e25231
    [134]
    Shirogane, T., Jin, J., Ang, X.L. et al. J. Biol. Chem., 280 (2005),pp. 26863-26872
    [135]
    Shostak, A., Meyer-Kovac, J., Oster, H. Circadian regulation of lipid mobilization in white adipose tissues Diabetes, 62 (2013),pp. 2195-2203
    [136]
    Siepka, S.M., Yoo, S.H., Park, J. et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression Cell, 129 (2007),pp. 1011-1023
    [137]
    So, A.Y., Bernal, T.U., Pillsbury, M.L. et al. Glucocorticoid regulation of the circadian clock modulates glucose homeostasis Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 17582-17587
    [138]
    Solanes, G., Pedraza, N., Iglesias, R. et al. Functional relationship between MyoD and peroxisome proliferator-activated receptor-dependent regulatory pathways in the control of the human uncoupling protein-3 gene transcription Mol. Endocrinol., 17 (2003),pp. 1944-1958
    [139]
    Solt, L.A., Wang, Y., Banerjee, S. et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists Nature, 485 (2012),pp. 62-68
    [140]
    Sookoian, S., Gemma, C., Fernandez, G.T. et al. Effects of rotating shift work on biomarkers of metabolic syndrome and inflammation J. Intern. Med., 261 (2007),pp. 285-292
    [141]
    Spiegel, K., Knutson, K., Leproult, R. et al. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes J. Appl. Physiol. (1985), 99 (2005),pp. 2008-2019
    [142]
    Stubblefield, J.J., Terrien, J., Green, C.B. Nocturnin: at the crossroads of clocks and metabolism Trends Endocrinol. Metab., 23 (2012),pp. 326-333
    [143]
    Takasu, N.N., Pendergast, J.S., Olivas, C.S. et al. PLoS ONE, 8 (2013),p. e64333
    [144]
    Takeda, Y., Kang, H.S., Angers, M. et al. Nucleic Acids Res., 39 (2011),pp. 4769-4782
    [145]
    Turek, F.W., Joshu, C., Kohsaka, A. et al. Obesity and metabolic syndrome in circadian Clock mutant mice Science, 308 (2005),pp. 1043-1045
    [146]
    Ueda, H.R., Chen, W., Adachi, A. et al. A transcription factor response element for gene expression during circadian night Nature, 418 (2002),pp. 534-539
    [147]
    Ueda, H.R., Chen, W., Minami, Y. et al. Molecular-timetable methods for detection of body time and rhythm disorders from single-time-point genome-wide expression profiles Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 11227-11232
    [148]
    Um, J.H., Yang, S., Yamazaki, S. et al. Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2 J. Biol. Chem., 282 (2007),pp. 20794-20798
    [149]
    van der Spek, R., Kreier, F., Fliers, E. et al. Circadian rhythms in white adipose tissue Prog. Brain Res., 199 (2012),pp. 183-201
    [150]
    Wallace, A., Chinn, D., Rubin, G. Taking simvastatin in the morning compared with in the evening: randomised controlled trial BMJ, 327 (2003),p. 788
    [151]
    Wenk, M.R. Lipidomics: new tools and applications Cell, 143 (2010),pp. 888-895
    [152]
    , Bogan, R.K., Wyatt, J.K. Shift work and the assessment and management of shift work disorder (SWD) Sleep Med. Rev., 17 (2013),pp. 41-54
    [153]
    Wu, X., Wiater, M.F., Ritter, S. NPAS2 deletion impairs responses to restricted feeding but not to metabolic challenges Physiol. Behav., 99 (2010),pp. 466-471
    [154]
    Yamazaki, S., Kerbeshian, M.C., Hocker, C.G. et al. J. Neurosci., 18 (1998),pp. 10709-10723
    [155]
    Yamazaki, S., Numano, R., Abe, M. et al. Resetting central and peripheral circadian oscillators in transgenic rats Science, 288 (2000),pp. 682-685
    [156]
    Yan, J., Wang, H., Liu, Y. et al. Analysis of gene regulatory networks in the mammalian circadian rhythm PLoS Comput. Biol., 4 (2008),p. e1000193
    [157]
    Yang, X., Downes, M., Yu, R.T. et al. Nuclear receptor expression links the circadian clock to metabolism Cell, 126 (2006),pp. 801-810
    [158]
    Yoo, S.H., Mohawk, J.A., Siepka, S.M. et al. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm Cell, 152 (2013),pp. 1091-1105
    [159]
    Yoo, S.H., Yamazaki, S., Lowrey, P.L. et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 5339-5346
    [160]
    Zheng, B., Albrecht, U., Kaasik, K. et al. Cell, 105 (2001),pp. 683-694
    [161]
    Zhu, L.L., Zhou, Q., Yan, X.F. et al. Optimal time to take once-daily oral medications in clinical practice Int. J. Clin. Pract., 62 (2008),pp. 1560-1571
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (90) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return