5.9
CiteScore
5.9
Impact Factor
Volume 41 Issue 5
May  2014
Turn off MathJax
Article Contents

Recent Advances in Understanding Proteins Involved in Lipid Droplet Formation, Growth and Fusion

doi: 10.1016/j.jgg.2014.03.003
More Information
  • Corresponding author: E-mail address: david.silver@duke-nus.edu.sg (David L. Silver)
  • Received Date: 2013-10-25
  • Accepted Date: 2014-03-05
  • Rev Recd Date: 2014-03-03
  • Available Online: 2014-03-19
  • Publish Date: 2014-05-20
  • Lipid droplets (LDs) were once viewed as simple, inert lipid micelles. However, they are now known to be organelles with a rich proteome involved in a myriad of cellular processes. LDs are heterogeneous in nature with different sizes and compositions of phospholipids, neutral lipids and proteins. This review takes a focused look at the roles of proteins involved in the regulation of LD formation, expansion, and morphology. The related proteins are summarized such as the fat-specific protein (Fsp27), fat storage-inducing transmembrane (FIT) proteins, seipin and ADP-ribosylation factor 1-coat protein complex I (Arf-COPI). Finally, we present important challenges in LD biology for a deeper understanding of this dynamic organelle to be achieved.
  • loading
  • [1]
    Arisawa, K., Ichi, I., Yasukawa, Y. et al. Changes in the phospholipid fatty acid composition of the lipid droplet during the differentiation of 3T3-L1 adipocytes J. Biochem., 154 (2013),pp. 281-289
    [2]
    Bartz, R., Li, W.H., Venables, B. et al. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic J. Lipid Res., 48 (2007),pp. 837-847
    [3]
    Bartz, R., Zehmer, J.K., Zhu, M. et al. Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation J. Proteome Res., 6 (2007),pp. 3256-3265
    [4]
    Beck, R., Ravet, M., Wieland, F.T. et al. The COPI system: molecular mechanisms and function FEBS Lett., 583 (2009),pp. 2701-2709
    [5]
    Beller, M., Riedel, D., Jansch, L. et al. Mol. Cell. Proteomics, 5 (2006),pp. 1082-1094
    [6]
    Beller, M., Sztalryd, C., Southall, N. et al. COPI complex is a regulator of lipid homeostasis PLoS Biol., 6 (2008),p. e292
    [7]
    Bouchoux, J., Beilstein, F., Pauquai, T. et al. The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics Biol. Cell, 103 (2011),pp. 499-517
    [8]
    Brasaemle, D.L., Dolios, G., Shapiro, L. et al. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes J. Biol. Chem., 279 (2004),pp. 46835-46842
    [9]
    Brasaemle, D.L., Subramanian, V., Garcia, A. et al. Perilipin A and the control of triacylglycerol metabolism Mol. Cell. Biochem., 326 (2009),pp. 15-21
    [10]
    Brasaemle, D.L., Wolins, N.E. Packaging of fat: an evolving model of lipid droplet assembly and expansion J. Biol. Chem., 287 (2012),pp. 2273-2279
    [11]
    Buhman, K.K., Chen, H.C., The enzymes of neutral lipid synthesis J. Biol. Chem., 276 (2001),pp. 40369-40372
    [12]
    Chen, W., Chang, B., Saha, P. et al. Berardinelli-seip congenital lipodystrophy 2/seipin is a cell-autonomous regulator of lipolysis essential for adipocyte differentiation Mol. Cell. Biol., 32 (2012),pp. 1099-1111
    [13]
    Cui, X., Wang, Y., Meng, L. et al. Overexpression of a short human seipin/BSCL2 isoform in mouse adipose tissue results in mild lipodystrophy Am. J. Physiol.-Endoc. M., 302 (2012),pp. E705-E713
    [14]
    Cui, X., Wang, Y., Tang, Y. et al. Seipin ablation in mice results in severe generalized lipodystrophy Hum. Mol. Genet., 20 (2011),pp. 3022-3030
    [15]
    Ding, Y., Yang, L., Zhang, S. et al. Identification of the major functional proteins of prokaryotic lipid droplets J. Lipid. Res., 53 (2012),pp. 399-411
    [16]
    Egan, J.J., Greenberg, A.S., Chang, M.K. et al. Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 8537-8541
    [17]
    Fei, W., Shui, G., Gaeta, B. et al. Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast J. Cell Biol., 180 (2008),pp. 473-482
    [18]
    Fei, W., Shui, G., Zhang, Y. et al. A role for phosphatidic acid in the formation of “supersized” lipid droplets PLoS Genet., 7 (2011),p. e1002201
    [19]
    Gibellini, F., Smith, T.K. IUBMB Life, 62 (2010),pp. 414-428
    [20]
    Gong, J., Sun, Z., Wu, L. et al. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites J. Cell Biol., 195 (2011),pp. 953-963
    [21]
    Goodman, J.M. Demonstrated and inferred metabolism associated with cytosolic lipid droplets J. Lipid Res., 50 (2009),pp. 2148-2156
    [22]
    Gross, D.A., Zhan, C., Silver, D.L. Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 19581-19586
    [23]
    Guo, Y., Walther, T.C., Rao, M. et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization Nature, 453 (2008),pp. 657-661
    [24]
    Haemmerle, G., Lass, A., Zimmermann, R. et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase Science, 312 (2006),pp. 734-737
    [25]
    Harris, C.A., Haas, J.T., Streeper, R.S. et al. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes J. Lipid Res., 52 (2011),pp. 657-667
    [26]
    Hu, J., Shibata, Y., Zhu, P.P. et al. A class of dynamin-like GTPases involved in the generation of the tubular ER network Cell, 138 (2009),pp. 549-561
    [27]
    Imamura, M., Inoguchi, T., Ikuyama, S. et al. ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts Am. J. Physiol.-Endoc. M., 283 (2002),pp. E775-E783
    [28]
    Ivanova, P.T., Milne, S.B., Myers, D.S. et al. Lipidomics: a mass spectrometry based systems level analysis of cellular lipids Curr. Opin. Chem. Biol., 13 (2009),pp. 526-531
    [29]
    Ivashov, V.A., Grillitsch, K., Koefeler, H. et al. Biochim. Biophys. Acta, 1831 (2013),pp. 282-290
    [30]
    Jacquier, N., Mishra, S., Choudhary, V. et al. Expression of oleosin and perilipins in yeast promote formation of lipid droplets from the endoplasmatic reticulum J. Cell Sci., 126 (2013),pp. 5198-5209
    [31]
    Kadereit, B., Kumar, P., Wang, W.J. et al. Evolutionarily conserved gene family important for fat storage Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 94-99
    [32]
    Keller, P., Petrie, J.T., De Rose, P. et al. Fat-specific protein 27 regulates storage of triacylglycerol J. Biol. Chem., 283 (2008),pp. 14355-14365
    [33]
    Klemm, R.W., Norton, J.P., Cole, R.A. et al. A conserved role for atlastin GTPases in regulating lipid droplet size Cell Rep., 3 (2013),pp. 1465-1475
    [34]
    Koh, Y.K., Lee, M.Y., Kim, J.W. et al. Lipin 1 is a key factor for the maturation and maintenance of adipocytes in the regulatory network with CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma 2 J. Biol. Chem., 283 (2008),pp. 34896-34906
    [35]
    Krahmer, N., Guo, Y., Wilfling, F. et al. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase Cell Metab., 14 (2011),pp. 504-515
    [36]
    Krahmer, N., Hilger, M., Kory, N. et al. Protein correlation profiles identify lipid droplet proteins with high confidence Mol. Cell. Proteomics, 12 (2013),pp. 1115-1126
    [37]
    Kuerschner, L., Moessinger, C., Thiele, C. Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets Traffic, 9 (2008),pp. 338-352
    [38]
    Lee, M.C., Miller, E.A., Goldberg, J. et al. Bi-directional protein transport between the ER and Golgi Annu. Rev. Cell Dev. Biol., 20 (2004),pp. 87-123
    [39]
    Li, F., Gu, Y., Dong, W. et al. Cell death-inducing DFF45-like effector, a lipid droplet-associated protein, might be involved in the differentiation of human adipocytes FEBS J., 277 (2010),pp. 4173-4183
    [40]
    Lu, X., Gruia-Gray, J., Copeland, N.G. et al. The murine perilipin gene: the lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin Mamm. Genome, 12 (2001),pp. 741-749
    [41]
    Matsusue, K., Kusakabe, T., Noguchi, T. et al. Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27 Cell Metab., 7 (2008),pp. 302-311
    [42]
    McFie, P.J., Banman, S.L., Kary, S. et al. Murine diacylglycerol acyltransferase-2 (DGAT2) can catalyze triacylglycerol synthesis and promote lipid droplet formation independent of its localization to the endoplasmic reticulum J. Biol. Chem., 286 (2011),pp. 28235-28246
    [43]
    Miranda, D.A., Koves, T.R., Gross, D.A. et al. Re-patterning of skeletal muscle energy metabolism by fat storage-inducing transmembrane protein 2 J. Biol. Chem., 286 (2011),pp. 42188-42199
    [44]
    Murphy, D. The dynamic roles of intracellular lipid droplets: from archaea to mammals Protoplasma, 249 (2012),pp. 541-585
    [45]
    Murphy, D.J., Vance, J. Mechanisms of lipid-body formation Trends Biochem. Sci., 24 (1999),pp. 109-115
    [46]
    Nakamura, N., Banno, Y., Tamiya-Koizumi, K. Arf1-dependent PLD1 is localized to oleic acid-induced lipid droplets in NIH3T3 cells Biochem. Biophy. Res. Commun., 335 (2005),pp. 117-123
    [47]
    Nishino, N., Tamori, Y., Tateya, S. et al. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets J. Clin. Invest., 118 (2008),pp. 2808-2821
    [48]
    Novikoff, A.B., Novikoff, P.M., Rosen, O.M. et al. Organelle relationships in cultured 3T3-L1 preadipocytes J. Cell Biol., 87 (1980),pp. 180-196
    [49]
    Payne, V.A., Grimsey, N., Tuthill, A. et al. The human lipodystrophy gene BSCL2/seipin may be essential for normal adipocyte differentiation Diabetes, 57 (2008),pp. 2055-2060
    [50]
    Perktold, A., Zechmann, B., Daum, G. et al. Organelle association visualized by three-dimensional ultrastructural imaging of the yeast cell FEMS Yeast Res., 7 (2007),pp. 629-638
    [51]
    Phan, J., Peterfy, M., Reue, K. J. Biol. Chem., 279 (2004),pp. 29558-29564
    [52]
    Puri, V., Konda, S., Ranjit, S. et al. Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage J. Biol. Chem., 282 (2007),pp. 34213-34218
    [53]
    Rismanchi, N., Soderblom, C., Stadler, J. et al. Atlastin GTPases are required for Golgi apparatus and ER morphogenesis Hum. Mol. Genet., 17 (2008),pp. 1591-1604
    [54]
    Rubio-Cabezas, O., Puri, V., Murano, I. et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC EMBO Mol. Med., 1 (2009),pp. 280-287
    [55]
    Schoenborn, V., Heid, I.M., Vollmert, C. et al. The ATGL gene is associated with free fatty acids, triglycerides, and type 2 diabetes Diabetes, 55 (2006),pp. 1270-1275
    [56]
    Schoiswohl, G., Schweiger, M., Schreiber, R. et al. Adipose triglyceride lipase plays a key role in the supply of the working muscle with fatty acids J. Lipid Res., 51 (2010),pp. 490-499
    [57]
    Shi, X., Li, J., Zou, X. et al. Regulation of lipid droplet size and phospholipid composition by stearoyl-CoA desaturase J. Lipid Res., 54 (2013),pp. 2504-2514
    [58]
    Sim, M.F., Dennis, R.J., Aubry, E.M. et al. The human lipodystrophy protein seipin is an ER membrane adaptor for the adipogenic PA phosphatase lipin 1 Mol. Metab., 2 (2012),pp. 38-46
    [59]
    Skinner, J.R., Shew, T.M., Schwartz, D.M. et al. Diacylglycerol enrichment of endoplasmic reticulum or lipid droplets recruits perilipin 3/TIP47 during lipid storage and mobilization J. Biol. Chem., 284 (2009),pp. 30941-30948
    [60]
    Spandl, J., Lohmann, D., Kuerschner, L. et al. J. Biol. Chem., 286 (2011),pp. 5599-5606
    [61]
    Spanova, M., Czabany, T., Zellnig, G. et al. J. Biol. Chem., 285 (2010),pp. 6127-6133
    [62]
    Sun, Z., Gong, J., Wu, H. et al. Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes Nat. Commun., 4 (2013),p. 1594
    [63]
    Szymanski, K.M., Binns, D., Bartz, R. et al. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 20890-20895
    [64]
    Takashima, K., Saitoh, A., Hirose, S. et al. GBF1-Arf-COPI-ArfGAP-mediated Golgi-to-ER transport involved in regulation of lipid homeostasis Cell Struct. Func., 36 (2011),pp. 223-235
    [65]
    Tauchi-Sato, K., Ozeki, S., Houjou, T. et al. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition J. Biol. Chem., 277 (2002),pp. 44507-44512
    [66]
    Thiam, A.R., Antonny, B., Wang, J. et al. COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 13244-13249
    [67]
    Tian, Y., Bi, J., Shui, G. et al. PLoS Genet., 7 (2011),p. e1001364
    [68]
    Walker, A.K., Jacobs, R.L., Watts, J.L. et al. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans Cell, 147 (2011),pp. 840-852
    [69]
    Walther, T.C., The life of lipid droplets Biochim. Biophys. Acta, 1791 (2009),pp. 459-466
    [70]
    Wilfling, F., Wang, H., Haas, J.T. et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets Dev. Cell, 24 (2013),pp. 384-399
    [71]
    Wolins, N.E., Quaynor, B.K., Skinner, J.R. et al. S3-12, Adipophilin, and TIP47 package lipid in adipocytes J. Biol. Chem., 280 (2005),pp. 19146-19155
    [72]
    Wolins, N.E., Rubin, B., Brasaemle, D.L. TIP47 associates with lipid droplets J. Biol. Chem., 276 (2001),pp. 5101-5108
    [73]
    Xu, G., Sztalryd, C., Lu, X. et al. Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway J. Biol. Chem., 280 (2005),pp. 42841-42847
    [74]
    Xu, N., Zhang, S.O., Cole, R.A. et al. The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface J. Cell Biol., 198 (2012),pp. 895-911
    [75]
    Yang, L., Ding, Y., Chen, Y. et al. The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans J. Lipid Res., 53 (2012),pp. 1245-1253
    [76]
    Yang, W., Thein, S., Guo, X. et al. Seipin differentially regulates lipogenesis and adipogenesis through a conserved core sequence and an evolutionarily acquired C-terminus Biochem. J., 452 (2013),pp. 37-44
    [77]
    Yang, W., Thein, S., Wang, X. et al. BSCL2/seipin regulates adipogenesis through actin cytoskeleton remodelling Hum. Mol. Genet, 23 (2014),pp. 502-513
    [78]
    Yu, W., Bozza, P.T., Tzizik, D.M. et al. Co-compartmentalization of MAP kinases and cytosolic phospholipase A2 at cytoplasmic arachidonate-rich lipid bodies Am. J. Pathol., 152 (1998),pp. 759-769
    [79]
    Yu, W., Cassara, J., Weller, P.F. Phosphatidylinositide 3-kinase localizes to cytoplasmic lipid bodies in human polymorphonuclear leukocytes and other myeloid-derived cells Blood, 95 (2000),pp. 1078-1085
    [80]
    Zehmer, J.K., Huang, Y., Peng, G. et al. A role for lipid droplets in inter-membrane lipid traffic Proteomics, 9 (2009),pp. 914-921
    [81]
    Zimmermann, R., Strauss, J.G., Haemmerle, G. et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase Science, 306 (2004),pp. 1383-1386
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (106) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return