[1] |
Brindisi, M.C., Guiu, B., Duvillard, L. et al. Liver fat content is associated with an increase in cholesterol synthesis independent of statin therapy use in patients with type 2 diabetes Atherosclerosis, 224 (2012),pp. 465-468
|
[2] |
Brouwers, M.C., Konrad, R.J., van Himbergen, T.M. et al. Plasma proprotein convertase subtilisin kexin type 9 levels are related to markers of cholesterol synthesis in familial combined hyperlipidemia Nutr. Metab. Cardiovasc. Dis., 23 (2013),pp. 1115-1121
|
[3] |
Brown, A.J., Dean, R.T., Jessup, W. Free and esterified oxysterol: formation during copper-oxidation of low density lipoprotein and uptake by macrophages J. Lipid Res., 37 (1996),pp. 320-335
|
[4] |
Brown, A.J., Jessup, W. Oxysterols: sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis Mol. Aspects Med., 30 (2009),pp. 111-122
|
[5] |
Brown, A.J., Leong, S.L., Dean, R.T. et al. 7-Hydroperoxycholesterol and its products in oxidized low density lipoprotein and human atherosclerotic plaque J. Lipid Res., 38 (1997),pp. 1730-1745
|
[6] |
Byskov, A.G., Andersen, C.Y., Nordholm, L. et al. Chemical structure of sterols that activate oocyte meiosis Nature, 374 (1995),pp. 559-562
|
[7] |
Cederberg, H., Gylling, H., Miettinen, T.A. et al. Non-cholesterol sterol levels predict hyperglycemia and conversion to type 2 diabetes in Finnish men PLoS ONE, 8 (2013),p. e67406
|
[8] |
Chevy, F., Humbert, L., Wolf, C. Sterol profiling of amniotic fluid: a routine method for the detection of distal cholesterol synthesis deficit Prenat. Diagn., 25 (2005),pp. 1000-1006
|
[9] |
de Sain-van der Velden, M.G., Verrips, A., Prinsen, B.H. et al. Elevated cholesterol precursors other than cholestanol can also be a hallmark for CTX J. Inherit. Metab. Dis., 31 (2008),pp. 387-393
|
[10] |
Dietschy, J.M., Turley, S.D., Spady, D.K. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans J. Lipid Res., 34 (1993),pp. 1637-1659
|
[11] |
Fahy, E., Subramaniam, S., Brown, H.A. et al. A comprehensive classification system for lipids J. Lipid Res., 46 (2005),pp. 839-861
|
[12] |
Fahy, E., Subramaniam, S., Murphy, R.C. et al. Update of the LIPID MAPS comprehensive classification system for lipids J. Lipid Res. (2009),pp. S9-S14
|
[13] |
FitzPatrick, D.R., Keeling, J.W., Evans, M.J. et al. Clinical phenotype of desmosterolosis Am. J. Med. Genet., 75 (1998),pp. 145-152
|
[14] |
Gill, S., Chow, R., Brown, A.J. Sterol regulators of cholesterol homeostasis and beyond: the oxysterol hypothesis revisited and revised Prog. Lipid Res., 47 (2008),pp. 391-404
|
[15] |
Gill, S., Stevenson, J., Kristiana, I. et al. Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase Cell Metab., 13 (2011),pp. 260-273
|
[16] |
Gylling, H., Hallikainen, M., Pihlajamaki, J. et al. Insulin sensitivity regulates cholesterol metabolism to a greater extent than obesity: lessons from the METSIM Study J. Lipid Res., 51 (2010),pp. 2422-2427
|
[17] |
He, M., Kratz, L.E., Michel, J.J. et al. J. Clin. Invest., 121 (2011),pp. 976-984
|
[18] |
Javitt, N.B. Alzheimer's disease: neuroprogesterone, epoxycholesterol, and ABC transporters as determinants of neurodesmosterol tissue levels and its role in amyloid protein processing J. Alzheimers Dis., 35 (2013),pp. 441-450
|
[19] |
Kelley, R.I., Kratz, L.E., Glaser, R.L. et al. Abnormal sterol metabolism in a patient with Antley-Bixler syndrome and ambiguous genitalia Am. J. Med. Genet., 110 (2002),pp. 95-102
|
[20] |
Kölsch, H., Heun, R., Jessen, F. et al. Alterations of cholesterol precursor levels in Alzheimer's disease Biochim. Biophys. Acta, 1801 (2010),pp. 945-950
|
[21] |
Lange, Y., Ory, D.S., Ye, J. et al. Effectors of rapid homeostatic responses of endoplasmic reticulum cholesterol and 3-hydroxy-3-methylglutaryl-CoA reductase J. Biol. Chem., 283 (2008),pp. 1445-1455
|
[22] |
Lehmann, B., Genehr, T., Knuschke, P. et al. J. Invest. Dermatol., 117 (2001),pp. 1179-1185
|
[23] |
Leichner, G.S., Avner, R., Harats, D. et al. Metabolically regulated endoplasmic reticulum-associated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase: evidence for requirement of a geranylgeranylated protein J. Biol. Chem., 286 (2011),pp. 32150-32161
|
[24] |
Liebisch, G., Vizcaíno, J.A., Köfeler, H. et al. Shorthand notation for lipid structures derived from mass spectrometry J. Lipid Res., 54 (2013),pp. 1523-1530
|
[25] |
Mackay, D.S., Jones, P.J. Plasma noncholesterol sterols: current uses, potential and need for standardization Curr. Opin. Lipidol., 23 (2012),pp. 241-247
|
[26] |
Matthan, N.R., Resteghini, N., Robertson, M. et al. Cholesterol absorption and synthesis markers in individuals with and without a CHD event during pravastatin therapy: insights from the PROSPER trial J. Lipid Res., 51 (2010),pp. 202-209
|
[27] |
Matthan, N.R., Zhu, L., Pencina, M. et al. Sex-specific differences in the predictive value of cholesterol homeostasis markers and 10-year cardiovascular disease event rate in framingham offspring study participants J. Am. Heart Assoc., 2 (2013),p. e005066
|
[28] |
Matysik, S., Klunemann, H.H., Schmitz, G. Gas chromatography-tandem mass spectrometry method for the simultaneous determination of oxysterols, plant sterols, and cholesterol precursors Clin. Chem., 58 (2012),pp. 1557-1564
|
[29] |
McDonald, J.G., Smith, D.D., Stiles, A.R. et al. A comprehensive method for extraction and quantitative analysis of sterols and secosteroids from human plasma J. Lipid Res., 53 (2012),pp. 1399-1409
|
[30] |
McDonald, J.G., Thompson, B.M., McCrum, E.C. et al. Extraction and analysis of sterols in biological matrices by high performance liquid chromatography electrospray ionization mass spectrometry Meth. Enzymol., 432 (2007),pp. 145-170
|
[31] |
Miettinen, T.A., Tilvis, R.S., Kesaniemi, Y.A. Serum cholestanol and plant sterol levels in relation to cholesterol metabolism in middle-aged men Metabolism, 38 (1989),pp. 136-140
|
[32] |
Min, H.K., Kapoor, A., Fuchs, M. et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease Cell Metab., 15 (2012),pp. 665-674
|
[33] |
Nissinen, M.J., Miettinen, T.E., Gylling, H. et al. Applicability of non-cholesterol sterols in predicting response in cholesterol metabolism to simvastatin and fluvastatin treatment among hypercholesterolemic men Nutr. Metab. Cardiovasc. Dis., 20 (2010),pp. 308-316
|
[34] |
Pandey, A.V., Fluck, C.E. NADPH P450 oxidoreductase: structure, function, and pathology of diseases Pharmacol. Ther., 138 (2013),pp. 229-254
|
[35] |
Porter, F.D., Herman, G.E. Malformation syndromes caused by disorders of cholesterol synthesis J. Lipid Res., 52 (2011),pp. 6-34
|
[36] |
Rajaratnam, R.A., Gylling, H., Miettinen, T.A. Impaired postprandial clearance of squalene and apolipoprotein B-48 in post-menopausal women with coronary artery disease Clin. Sci. (Lond.), 97 (1999),pp. 183-192
|
[37] |
Rodgers, M.A., Saghatelian, A., Yang, P.L. Identification of an overabundant cholesterol precursor in hepatitis B virus replicating cells by untargeted lipid metabolite profiling J. Am. Chem. Soc., 131 (2009),pp. 5030-5031
|
[38] |
Rodgers, M.A., Villareal, V.A., Schaefer, E.A. et al. Lipid metabolite profiling identifies desmosterol metabolism as a new antiviral target for hepatitis C virus J. Am. Chem. Soc., 134 (2012),pp. 6896-6899
|
[39] |
Sato, Y., Suzuki, I., Nakamura, T. et al. Identification of a new plasma biomarker of Alzheimer's disease using metabolomics technology J. Lipid Res., 53 (2012),pp. 567-576
|
[40] |
Simonen, M., Mannisto, V., Leppanen, J. et al. Desmosterol in human nonalcoholic steatohepatitis Hepatology, 58 (2013),pp. 976-982
|
[41] |
Simonen, P., Kotronen, A., Hallikainen, M. et al. Cholesterol synthesis is increased and absorption decreased in non-alcoholic fatty liver disease independent of obesity J. Hepatol., 54 (2011),pp. 153-159
|
[42] |
Simonen, P.P., Gylling, H., Miettinen, T.A. The distribution of squalene and non-cholesterol sterols in lipoproteins in type 2 diabetes Atherosclerosis, 194 (2007),pp. 222-229
|
[43] |
Song, B.L., Javitt, N.B., DeBose-Boyd, R.A. Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol Cell Metab., 1 (2005),pp. 179-189
|
[44] |
Spann, N.J., Garmire, L.X., McDonald, J.G. et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses Cell, 151 (2012),pp. 138-152
|
[45] |
Weingärtner, O., Lütjohann, D., Vanmierlo, T. et al. Markers of enhanced cholesterol absorption are a strong predictor for cardiovascular diseases in patients without diabetes mellitus Chem. Phys. Lipids, 164 (2011),pp. 451-456
|
[46] |
Wisniewski, T., Newman, K., Javitt, N.B. Alzheimer's disease: brain desmosterol levels J. Alzheimers Dis., 33 (2013),pp. 881-888
|
[47] |
Xu, L., Korade, Z., , Mirnics, K. et al. Metabolism of oxysterols derived from nonenzymatic oxidation of 7-dehydrocholesterol in cells J. Lipid Res., 54 (2013),pp. 1135-1143
|
[48] |
Yang, C., McDonald, J.G., Patel, A. et al. Sterol intermediates from cholesterol biosynthetic pathway as liver X receptor ligands J. Biol. Chem., 281 (2006),pp. 27816-27826
|
[49] |
Zerenturk, E.J., Kristiana, I., Gill, S. et al. The endogenous regulator 24(S),25-epoxycholesterol inhibits cholesterol synthesis at DHCR24 (Seladin-1) Biochim. Biophys. Acta, 1821 (2012),pp. 1269-1277
|
[50] |
Zerenturk, E.J., Sharpe, L.J., Ikonen, E. et al. Desmosterol and DHCR24: unexpected new directions for a terminal step in cholesterol synthesis Prog. Lipid Res., 52 (2013),pp. 666-680
|
[51] |
Zhu, J., Mounzih, K., Chehab, E.F. et al. Effects of FoxO4 overexpression on cholesterol biosynthesis, triacylglycerol accumulation, and glucose uptake J. Lipid Res., 51 (2010),pp. 1312-1324
|