[1] |
Belser, J.A., Blixt, O., Chen, L.M. et al. Contemporary north American influenza H7 viruses possess human receptor specificity: implications for virus transmissibility Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 7558-7563
|
[2] |
Chen, H., Bright, R.A., Subbarao, K. et al. Polygenic virulence factors involved in pathogenesis of 1997 Hong Kong H5N1 influenza viruses in mice Virus. Res., 128 (2007),pp. 159-163
|
[3] |
Conenello, G.M., Zamarin, D., Perrone, L.A. et al. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence PLoS Pathog., 3 (2007),pp. 1414-1421
|
[4] |
De Groot, A.S., Ardito, M., Terry, F. et al. Low immunogenicity predicted for emerging avian-origin H7N9: implication for influenza vaccine design Hum. Vaccin. Immunother., 9 (2013),pp. 950-956
|
[5] |
de Wit, E., Kawaoka, Y., de Jong, M.D. et al. Pathogenicity of highly pathogenic avian influenza virus in mammals Vaccine, 26 (2008),pp. D54-D58
|
[6] |
de Wit, E., Munster, V.J., van Riel, D. et al. Molecular determinants of adaptation of highly pathogenic avian influenza H7N7 viruses to efficient replication in the human host J. Virol., 84 (2010),pp. 1597-1606
|
[7] |
Gao, R., Cao, B., Hu, Y. et al. Human infection with a novel avian-origin influenza A (H7N9) virus N. Engl. J. Med., 368 (2013),pp. 1888-1897
|
[8] |
Hatta, M., Gao, P., Halfmann, P. et al. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses Science, 293 (2001),pp. 1840-1842
|
[9] |
Hu, W. Receptor binding specificity and sequence comparison of a novel avian-origin H7N9 virus in China J. Biomed. Mater. Res., 6 (2013),pp. 533-542
|
[10] |
Hu, Y., Lu, S., Song, Z. et al. Association between adverse clinical outcome in human disease caused by novel influenza A H7N9 virus and sustained viral shedding and emergence of antiviral resistance Lancet, 381 (2013),pp. 2273-2279
|
[11] |
Imai, H., Shinya, K., Takano, R. et al. The HA and NS genes of human H5N1 influenza A virus contribute to high virulence in ferrets PLoS Pathog., 6 (2010),p. e1001106
|
[12] |
Ip, D.K., Liao, Q., Wu, P. et al. Detection of mild to moderate influenza A/H7N9 infection by China's national sentinel surveillance system for influenza-like illness: case series Brit. Med. J., 346 (2013),p. f3693
|
[13] |
Kageyama, T., Fujisaki, S., Takashita, E. et al. Genetic analysis of novel avian A (H7N9) influenza viruses isolated from patients in China, February to April 2013 Euro. Surveill., 18 (2013),p. 20453
|
[14] |
Shinya, K., Watanabe, S., Ito, T. et al. Adaptation of an H7N7 equine influenza A virus in mice J. Gen. Virol., 88 (2007),pp. 547-553
|
[15] |
Steel, J., Lowen, A.C., Mubareka, S. et al. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N PLoS Pathog., 5 (2009),p. e1000252
|
[16] |
Su, B., Wurtzer, S., Rameix-Welti, M.A. et al. Enhancement of the influenza A hemagglutinin (HA)-mediated cell-cell fusion and virus entry by the viral neuraminidase (NA) PLoS ONE, 4 (2009),p. e8495
|
[17] |
Sun, X., Jayaraman, A., Maniprasad, P. et al. N-linked glycosylation of the hemagglutinin protein influences virulence and antigenicity of the 1918 pandemic and seasonal H1N1 influenza A viruses J. Virol., 87 (2013),pp. 8756-8766
|
[18] |
Tharakaraman, K., Jayaraman, A., Raman, R. et al. Glycan receptor binding of the influenza A virus H7N9 hemagglutinin Cell, 153 (2013),pp. 1486-1493
|
[19] |
Wang, Y., Cheng, H., Liu, Z. et al. Towards a better understanding of the novel avian-origin H7N9 influenza A virus in China Sci. Rep., 3 (2013),p. 2318
|
[20] |
Watanabe, Y., Ibrahim, M.S., Suzuki, Y. et al. The changing nature of avian influenza A virus (H5N1) Trends. Microbiol., 20 (2012),pp. 11-20
|
[21] |
World Health Organization
|
[22] |
World Health Organization
|
[23] |
Xiong, X., Martin, S.R., Haire, L.F. et al. Receptor binding by an H7N9 influenza virus from humans Nature, 499 (2013),pp. 496-499
|