[1] |
Barrangou, R., Fremaux, C., Deveau, H. et al. CRISPR provides acquired resistance against viruses in prokaryotes Science, 315 (2007),pp. 1709-1712
|
[2] |
Baena-Lopez, L.A., Alexandre, C., Mitchell, A. et al. Development, 140 (2013),pp. 4818-4825
|
[3] |
Bassett, A.R., Tibbit, C., Ponting, C.P. et al. Cell Rep., 4 (2013),pp. 220-228
|
[4] |
Bassett, A.R., Tibbit, C., Ponting, C.P. et al. Biol. Open, 3 (2014),pp. 42-49
|
[5] |
Bellen, H.J., Levis, R.W., He, Y. et al. Genetics, 188 (2011),pp. 731-743
|
[6] |
Bellen, H.J., Levis, R.W., Liao, G. et al. Genetics, 167 (2004),pp. 761-781
|
[7] |
Bernstein, B.E., Birney, E., Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome Nature, 489 (2012),pp. 57-74
|
[8] |
Beumer, K., Bhattacharyya, G., Bibikova, M. et al. Genetics, 172 (2006),pp. 2391-2403
|
[9] |
Beumer, K.J., Trautman, J.K., Bozas, A. et al. Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 19821-19826
|
[10] |
Beumer, K.J., Trautman, J.K., Mukherjee, K. et al. Donor DNA utilization during gene targeting with zinc-finger nucleases G3 (Bethesda), 3 (2013),pp. 657-664
|
[11] |
Bibikova, M., Beumer, K., Trautman, J.K. et al. Enhancing gene targeting with designed zinc finger nucleases Science, 300 (2003),p. 764
|
[12] |
Bibikova, M., Golic, M., Golic, K.G. et al. Genetics, 161 (2002),pp. 1169-1175
|
[13] |
Biswas, A., Gagnon, J.N., Brouns, S.J. et al. CRISPRTarget: bioinformatic prediction and analysis of crRNA targets RNA Biol., 10 (2013),pp. 817-827
|
[14] |
Boch, J., Scholze, H., Schornack, S. et al. Breaking the code of DNA binding specificity of TAL-type III effectors Science, 326 (2009),pp. 1509-1512
|
[15] |
Bonas, U., Stall, R.E., Staskawicz, B. Mol. Gen. Genet., 218 (1989),pp. 127-136
|
[16] |
Brockdorff, N. Noncoding RNA and polycomb recruitment RNA, 19 (2013),pp. 429-442
|
[17] |
Brouns, S.J., Jore, M.M., Lundgren, M. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes Science, 321 (2008),pp. 960-964
|
[18] |
Bulyk, M.L., Johnson, P.L., Church, G.M. Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors Nucleic Acids Res., 30 (2002),pp. 1255-1261
|
[19] |
Cermak, T., Doyle, E.L., Christian, M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting Nucleic Acids Res., 39 (2011),p. e82
|
[20] |
Cheng, A.W., Wang, H., Yang, H. et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system Cell Res., 23 (2013),pp. 1163-1171
|
[21] |
Choo, Y., Klug, A. Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions Proc. Natl. Acad. Sci. USA, 91 (1994),pp. 11168-11172
|
[22] |
Choo, Y., Klug, A. Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage Proc. Natl. Acad. Sci. USA, 91 (1994),pp. 11163-11167
|
[23] |
Choulika, A., Perrin, A., Dujon, B. et al. Mol. Cell. Biol., 15 (1995),pp. 1968-1973
|
[24] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[25] |
Dahlem, T.J., Hoshijima, K., Jurynec, M.J. et al. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome PLoS Genet., 8 (2012),p. e1002861
|
[26] |
Davidovich, C., Zheng, L., Goodrich, K.J. et al. Promiscuous RNA binding by polycomb repressive complex 2 Nat. Struct. Mol. Biol., 20 (2013),pp. 1250-1257
|
[27] |
Del Rio, S., Menezes, S.R., Setzer, D.R. The function of individual zinc fingers in sequence-specific DNA recognition by transcription factor IIIA J. Mol. Biol., 233 (1993),pp. 567-579
|
[28] |
DiCarlo, J.E., Norville, J.E., Mali, P. et al. Nucleic Acids Res., 41 (2013),pp. 4336-4343
|
[29] |
Dickinson, D.J., Ward, J.D., Reiner, D.J. et al. Nat. Methods, 10 (2013),pp. 1028-1034
|
[30] |
Esvelt, K.M., Mali, P., Braff, J.L. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing Nat. Methods, 10 (2013),pp. 1116-1121
|
[31] |
Farzadfard, F., Perli, S.D., Lu, T.K. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas ACS Synth. Biol., 2 (2013),pp. 604-613
|
[32] |
Flockhart, I., Booker, M., Kiger, A. et al. Nucleic Acids Res., 34 (2006),pp. D489-D494
|
[33] |
Flockhart, I.T., Booker, M., Hu, Y. et al. Nucleic Acids Res., 40 (2012),pp. D715-D719
|
[34] |
Fu, Y., Foden, J.A., Khayter, C. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells Nat. Biotechnol., 31 (2013),pp. 822-826
|
[35] |
Garneau, J.E., Dupuis, M.E., Villion, M. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA Nature, 468 (2010),pp. 67-71
|
[36] |
Gasiunas, G., Barrangou, R., Horvath, P. et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria Proc. Natl. Acad. Sci. USA, 109 (2012),pp. E2579-E2586
|
[37] |
Gilbert, L.A., Larson, M.H., Morsut, L. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes Cell, 154 (2013),pp. 442-451
|
[38] |
Gloor, G.B., Nassif, N.A., Johnson-Schlitz, D.M. et al. Science, 253 (1991),pp. 1110-1117
|
[39] |
Golic, K.G., Lindquist, S. Cell, 59 (1989),pp. 499-509
|
[40] |
Gratz, S.J., Cummings, A.M., Nguyen, J.N. et al. Genetics, 194 (2013),pp. 1029-1035
|
[41] |
Grissa, I., Vergnaud, G., Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats BMC Bioinformatics, 8 (2007),p. 172
|
[42] |
Grissa, I., Vergnaud, G., Pourcel, C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats Nucleic Acids Res., 35 (2007),pp. W52-W57
|
[43] |
Grissa, I., Vergnaud, G., Pourcel, C. CRISPRcompar: a website to compare clustered regularly interspaced short palindromic repeats Nucleic Acids Res., 36 (2008),pp. W145-W148
|
[44] |
Groth, A.C., Fish, M., Nusse, R. et al. Genetics, 166 (2004),pp. 1775-1782
|
[45] |
Gupta, A., Hall, V.L., Kok, F.O. et al. Targeted chromosomal deletions and inversions in zebrafish Genome Res., 23 (2013),pp. 1008-1017
|
[46] |
Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol, 31 (2013),pp. 827-832
|
[47] |
Huang, J., Zhou, W., Watson, A.M. et al. Genetics, 180 (2008),pp. 703-707
|
[48] |
Hwang, W.Y., Fu, Y., Reyon, D. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 227-229
|
[49] |
Ishino, Y., Shinagawa, H., Makino, K. et al. J. Bacteriol., 169 (1987),pp. 5429-5433
|
[50] |
Jansen, R., Embden, J.D., Gaastra, W. et al. Identification of genes that are associated with DNA repeats in prokaryotes Mol. Microbiol., 43 (2002),pp. 1565-1575
|
[51] |
Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
|
[52] |
Jinek, M., East, A., Cheng, A. et al. RNA-programmed genome editing in human cells Elife, 2 (2013),p. e00471
|
[53] |
Khalil, A.M., Guttman, M., Huarte, M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 11667-11672
|
[54] |
Kondo, S., Ueda, R. Genetics, 195 (2013),pp. 715-721
|
[55] |
Lange, S.J., Alkhnbashi, O.S., Rose, D. et al. CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems Nucleic Acids Res., 41 (2013),pp. 8034-8044
|
[56] |
Lee, H.Y., Haurwitz, R.E., Apffel, A. et al. RNA-protein analysis using a conditional CRISPR nuclease Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 5416-5421
|
[57] |
Li, T., Huang, S., Zhao, X. et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes Nucleic Acids Res., 39 (2011),pp. 6315-6325
|
[58] |
Lin, M.F., Carlson, J.W., Crosby, M.A. et al. Genome Res., 17 (2007),pp. 1823-1836
|
[59] |
Liu, J., Li, C., Yu, Z. et al. J. Genet. Genomics, 39 (2012),pp. 209-215
|
[60] |
Mali, P., Aach, J., Stranges, P.B. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering Nat. Biotechnol., 31 (2013),pp. 833-838
|
[61] |
Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
|
[62] |
McCarthy, M.I., Abecasis, G.R., Cardon, L.R. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges Nat. Rev. Genet., 9 (2008),pp. 356-369
|
[63] |
Meader, S., Ponting, C.P., Lunter, G. Massive turnover of functional sequence in human and other mammalian genomes Genome Res., 20 (2010),pp. 1335-1343
|
[64] |
Mojica, F.J., Diez-Villasenor, C., Garcia-Martinez, J. et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system Microbiology, 155 (2009),pp. 733-740
|
[65] |
Moscou, M.J., Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors Science, 326 (2009),p. 1501
|
[66] |
Park, P.J. ChIP-seq: advantages and challenges of a maturing technology Nat. Rev. Genet., 10 (2009),pp. 669-680
|
[67] |
Perez-Pinera, P., Kocak, D.D., Vockley, C.M. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors Nat. Methods, 10 (2013),pp. 973-976
|
[68] |
Qi, L.S., Larson, M.H., Gilbert, L.A. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell, 152 (2013),pp. 1173-1183
|
[69] |
Ran, F.A., Hsu, P.D., Lin, C.Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity Cell, 154 (2013),pp. 1380-1389
|
[70] |
Ren, X., Sun, J., Housden, B.E. et al. Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 19012-19017
|
[71] |
Reyon, D., Tsai, S.Q., Khayter, C. et al. FLASH assembly of TALENs for high-throughput genome editing Nat. Biotechnol., 30 (2012),pp. 460-465
|
[72] |
Rong, Y.S., Golic, K.G. Science, 288 (2000),pp. 2013-2018
|
[73] |
Rousseau, C., Gonnet, M., Le Romancer, M. et al. CRISPI: a CRISPR interactive database Bioinformatics, 25 (2009),pp. 3317-3318
|
[74] |
Roy, S., Ernst, J., Kharchenko, P.V. et al. Science, 330 (2010),pp. 1787-1797
|
[75] |
Sander, J.D., Maeder, M.L., Reyon, D. et al. ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool Nucleic Acids Res., 38 (2010),pp. W462-W468
|
[76] |
Sander, J.D., Zaback, P., Joung, J.K. et al. Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool Nucleic Acids Res., 35 (2007),pp. W599-W605
|
[77] |
Sanjana, N.E., Cong, L., Zhou, Y. et al. A transcription activator-like effector toolbox for genome engineering Nat. Protoc., 7 (2012),pp. 171-192
|
[78] |
Sebo, Z.L., Lee, H.B., Peng, Y. et al. Fly (Austin), 8 (2013)
|
[79] |
Shalem, O., Sanjana, N.E., Hartenian, E. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells Science, 343 (2014),pp. 84-87
|
[80] |
Shan, Q., Wang, Y., Li, J. et al. Targeted genome modification of crop plants using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 686-688
|
[81] |
Skennerton, C.T., Imelfort, M., Tyson, G.W. Crass: identification and reconstruction of CRISPR from unassembled metagenomic data Nucleic Acids Res., 41 (2013),p. e105
|
[82] |
Smih, F., Rouet, P., Romanienko, P.J. et al. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells Nucleic Acids Res., 23 (1995),pp. 5012-5019
|
[83] |
Wang, H., Yang, H., Shivalila, C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell, 153 (2013),pp. 910-918
|
[84] |
Wang, T., Wei, J.J., Sabatini, D.M. et al. Genetic screens in human cells using the CRISPR-Cas9 system Science, 343 (2014),pp. 80-84
|
[85] |
Wei, C., Liu, J., Yu, Z. et al. TALEN or Cas9 - rapid, efficient and specific choices for genome modifications J. Genet. Genomics, 40 (2013),pp. 281-289
|
[86] |
Xiao, A., Wang, Z., Hu, Y. et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish Nucleic Acids Res., 41 (2013),p. e141
|
[87] |
Yu, Z., Ren, M., Wang, Z. et al. Genetics, 195 (2013),pp. 289-291
|
[88] |
Zhao, J., Ohsumi, T.K., Kung, J.T. et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq Mol. Cell, 40 (2010),pp. 939-953
|