[1] |
Boch, J., Scholze, H., Schornack, S. et al. Breaking the code of DNA binding specificity of TAL-type III effectors Science, 326 (2009),pp. 1509-1512
|
[2] |
Cermak, T., Doyle, E.L., Christian, M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting Nucleic Acids Res., 39 (2011),p. e82
|
[3] |
Chen, K., Gao, C. TALENs: customizable molecular DNA scissors for genome engineering of plants J. Genet. Genomics, 40 (2013),pp. 271-279
|
[4] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[5] |
Curtin, S.J., Zhang, F., Sander, J.D. et al. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases Plant Physiol., 156 (2011),pp. 466-473
|
[6] |
Doyle, E.L., Booher, N.J., Standage, D.S. et al. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction Nucleic Acids Res., 40 (2012),pp. W117-W122
|
[7] |
Fu, Y., Foden, J.A., Khayter, C. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells Nat. Biotechnol., 31 (2013),pp. 822-826
|
[8] |
Gaj, T., Gersbach, C.A., ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering Trends Biotechnol., 31 (2013),pp. 397-405
|
[9] |
Gasiunas, G., Barrangou, R., Horvath, P. et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria Proc. Natl. Acad. Sci. USA, 109 (2012),pp. E2579-E2586
|
[10] |
Ishida, Y., Hiei, Y., Komari, T. Agrobacterium-mediated transformation of maize Nat. Protocols, 2 (2007),pp. 1614-1621
|
[11] |
Lei, Y., Guo, X., Deng, Y. et al. Cell Biosci., 3 (2013),p. 21
|
[12] |
Li, J.F., Norville, J., Aach, J. et al. Nat. Biotechnol., 31 (2013),pp. 688-691
|
[13] |
Li, T., Liu, B., Spalding, M.H. et al. High-efficiency TALEN-based gene editing produces disease-resistant rice Nat. Biotechnol., 30 (2012),pp. 390-392
|
[14] |
Mali, P., Yang, L.H., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
|
[15] |
Nekrasov, V., S, B., Weigel, D. et al. Nat. Biotechnol., 31 (2013),pp. 691-693
|
[16] |
Pattanayak, V., Lin, S., Guilinger, J.P. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity Nat. Biotechnol., 31 (2013),pp. 839-843
|
[17] |
Qi, Y., Li, X., Zhang, Y. et al. G3 (Bethesda), 3 (2013),pp. 1707-1715
|
[18] |
Shan, Q., Wang, Y., Chen, K. et al. Mol. Plant, 6 (2013),pp. 1365-1368
|
[19] |
Shan, Q., Wang, Y., Li, J. et al. Targeted genome modification of crop plants using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 686-688
|
[20] |
Schmid-Burgk, J.L., Schmidt, T., Kaiser, V. et al. A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes Nat. Biotechnol., 31 (2012),pp. 76-81
|
[21] |
Shi, J., Wang, H., Schellin, K. et al. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds Nat. Biotechnol., 25 (2007),pp. 930-937
|
[22] |
Shi, J., Wang, H., Wu, Y. et al. Plant Physiol., 131 (2003),pp. 507-515
|
[23] |
Shukla, V.K., Doyon, Y., Miller, J.C. et al. Nature, 459 (2009),pp. 437-441
|
[24] |
Sun, Y., Thompson, M., Lin, G. et al. Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from maize: molecular and biochemical characterization Plant Physiol., 144 (2007),pp. 1278-1291
|
[25] |
Wang, Z., Li, J., Huang, H. et al. An integrated chip for the high-throughput synthesis of transcription activator-like effectors Angew. Chem. Int. Ed. Engl., 51 (2012),pp. 8505-8508
|
[26] |
Wendt, T., Holm, P.B., Starker, C.G. et al. TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants Plant Mol. Biol., 83 (2013),pp. 279-285
|
[27] |
Zhang, F., Maeder, M.L., Unger-Wallace, E. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 12028-12033
|
[28] |
Zhang, Y., Zhang, F., Li, X. et al. Transcription activator-like effector nucleases enable efficient plant genome engineering Plant Physiol., 161 (2013),pp. 20-27
|