5.9
CiteScore
5.9
Impact Factor
Volume 41 Issue 4
Apr.  2014
Turn off MathJax
Article Contents

Molecular Cytogenetic Characterization of a Wheat – Leymus mollis 3D(3Ns) Substitution Line with Resistance to Leaf Rust

doi: 10.1016/j.jgg.2013.11.008
More Information
  • Corresponding author: E-mail address: zhjx881@163.com (Jixin Zhao)
  • Received Date: 2013-04-28
  • Accepted Date: 2013-11-28
  • Rev Recd Date: 2013-11-25
  • Available Online: 2013-12-28
  • Publish Date: 2014-04-20
  • Leymus mollis (Trin.) Pilger (NsNsXmXm, 2n = 28), a wild relative of common wheat, possesses many potentially valuable traits that could be transferred to common wheat during breeding programs. In this study, the karyotypic constitution of a wheat – L. mollis 3D(3Ns#1) disomic substitution line isolated from the F5 progeny of octoploid Tritileymus M842-16 × Triticum durum cv. D4286, which was designated as 10DM57, was determined using genomic in situ hybridization (GISH), fluorescent in situ hybridization (FISH), SSR markers, and EST-STS markers. Screening of mitosis and meiosis showed that 10DM57 had a chromosome karyotype of 2n = 42 = 21II. GISH indicated that 10DM57 was a line with 40 chromosomes from wheat and two of the Ns chromosomes from L. mollis, which formed a ring bivalent in pollen mother cells at metaphase I. FISH analysis showed that the chromosome 3D may be replaced by 3Ns#1 in 10DM57. DNA markers, including SSR and EST-STS primers, showed that the pair of wheat chromosome 3D in 10DM57 was substituted by the pair of chromosome 3Ns#1 from L. mollis. Evaluation of the agronomic traits showed that, compared with its common wheat relative 7182, 10DM57 was resistant to leaf rust while the spike length and number of spikes per plant were improved significantly, which correlated with a higher wheat yield. The new germplasm, 10DM57, could be exploited as an intermediate material in wheat genetic and breeding programs.
  • loading
  • [1]
    Anamthawat-Jónsson, K. Wide-hybrids between wheat and lymegrass: breeding and agricultural potential Icel Agr. Sci., 9 (1995),pp. 101-113
    [2]
    Anamthawat-Jónsson, K. Theor. Appl. Genet., 99 (1999),pp. 1087-1093
    [3]
    Anamthawat-Jónsson, K., Bödvarsdóttir, S.K., Bragason, B.T. et al. Euphytica, 93 (1997),pp. 293-300
    [4]
    Bao, Y., Wang, J., He, F. et al. Genet. Mol. Res., 11 (2012),pp. 3198-3206
    [5]
    Chen, G.L., Zheng, Q., Bao, Y.G. et al. J. Biosci., 37 (2012),pp. 149-155
    [6]
    Cifuentes, M., Benavente, E. Theor. Appl. Genet., 119 (2009),pp. 805-813
    [7]
    Cota-Sánchez, J.H., Remarchuk, K., Ubayasena, K. Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue Plant Mol. Biol. Report, 24 (2006),pp. 161-167
    [8]
    Dobrovolskaya, O.B., Sourdille, P., Bernard, M. et al. Chromosome synteny of the A genome of two evolutionary wheat lines Russ. J. Genet., 45 (2009),pp. 1368-1375
    [9]
    Forsström, P.O., Merker, A. Hereditas, 134 (2001),pp. 115-119
    [10]
    Friebe, B., Jiang, J., Raupp, W.J. et al. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status Euphytica, 91 (1996),pp. 59-87
    [11]
    Fu, J., Chen, S.Y., Zhang, A.J. Acta Genetica Sinica, 20 (1993),pp. 317-323
    [12]
    Fu, J., Chen, S.Y., Zhang, A.J. et al. Acta Genetica Sinica, 23 (1996),pp. 24-31
    [13]
    Fu, J., Xu, X., Yang, Q.H. et al. Acta Genetica Sinica, 24 (1997),pp. 350-357
    [14]
    Gale, M., Devos, K. Plant comparative genetics after 10 years Science, 282 (1998),pp. 656-659
    [15]
    Habora, M.E.E., Eltayeb, A.E., Tsujimoto, H. et al. Breed. Sci., 62 (2012),pp. 78-86
    [16]
    Jiang, J.M., Friebe, B., Gill, B.S. Recent advances in alien gene-transfer in wheat Euphytica, 177 (1994),pp. 309-334
    [17]
    Kalia, R.K., Rai, M.K., Kalia, S. et al. Microsatellite markers: an overview of the recent progress in plants Euphytica, 177 (2011),pp. 309-334
    [18]
    Kang, H., Wang, Y., Fedak, G. et al. PLoS ONE, 6 (2011),p. e21802
    [19]
    Kishii, M., Dou, Q., Garg, M. et al. Genes Genet. Syst., 85 (2010),pp. 281-286
    [20]
    Kishii, M., Wang, R.R.C., Tsujimoto, H. Chromosome Res., 11 (2003),pp. 741-748
    [21]
    Lukaszewski, A.J., Apolinarska, B., Gustafson, J.P. Introduction of the D-genome chromosomes from bread wheat into hexaploid triticale with a complete rye genome Genome, 29 (1987),pp. 425-430
    [22]
    Merker, A., Lantai, K. Acta Agric. Scand., 47 (1997),pp. 48-51
    [23]
    Mujeeb-Kazi, A., Rajaram, S.
    [24]
    Mukai, Y., Nakahara, Y., Yamamoto, M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes Genome, 36 (1993),pp. 489-494
    [25]
    Pedersen, C., Langridge, P. Identification of the entire chromosome complement of bread wheat by two-colour FISH Genome, 40 (1997),pp. 589-593
    [26]
    Pestsova, E., Ganal, M., Röder, M. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat Genome, 43 (2000),pp. 689-697
    [27]
    Qi, L.L., Wang, S.L., Chen, P.D. et al. Theor. Appl. Genet., 95 (1997),pp. 1084-1091
    [28]
    Raupp, W.J., Friebe, B., Gill, B.S. Suggested guidelines for the nomenclature and abbreviation of the genetic stocks of wheat and its relatives Wheat Inf. Serv., 81 (1995),pp. 51-55
    [29]
    Rayburn, A.L., Gill, B.S. Plant Mol. Biol. Report, 4 (1986),pp. 102-109
    [30]
    Röder, M., Korzun, V., Wendehake, K. et al. A microsatellite map of wheat Genetics, 149 (1998),pp. 2007-2023
    [31]
    Schneider, A., Line, G., Molnár-Láng, M. Plant Breed., 122 (2003),pp. 396-400
    [32]
    Schwarzacher, T., Anamathawat-Jónsson, K., Harrison, G.E. et al. Genomic in situ hybridization to identify alien chromosome segments in wheat Theor. Appl. Genet., 84 (1992),pp. 778-786
    [33]
    Sha, L.N., Yang, R.W., Fan, X. et al. Biochem. Genet., 46 (2008),pp. 605-619
    [34]
    Sharma, H.C., Gill, B.S. Current status of wide hybridization in wheat Euphytica, 32 (1983),pp. 17-31
    [35]
    Tsitsin, N.V. Remote hybridization as a method of creating new species and varieties of plants Euphytica, 14 (1965),pp. 326-330
    [36]
    Wang, D.W. Wide hybridization: engineering the next leap in wheat yield J. Genet. Genomics, 36 (2009),pp. 509-510
    [37]
    Wang, J., Chen, X.H., Du, W.L. et al. Genet. Resour. Crop Evol., 60 (2013),pp. 1453-1462
    [38]
    Wang, R.R.C.
    [39]
    Wang, R.R.C., Zhang, J.Y., Lee, B.S. et al. Genome, 49 (2006),pp. 511-519
    [40]
    Wang, X.P., Fu, J., Zhang, X.Q. et al. Acta Botanica Sinica, 42 (2000),pp. 582-586
    [41]
    Zhao, J.X., Du, W.L., Wu, J. et al. Euphytica, 190 (2013),pp. 45-52
    [42]
    Zhao, J.X., Ji, W.Q., Wu, J. et al. Genet. Resour. Crop Evol., 57 (2010),pp. 387-394
    [43]
    Zhou, X.F., Yang, X.M., Li, X.Q. et al. Plant Syst. Evol., 289 (2010),pp. 165-179
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (124) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return