[1] |
Abbe, E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung Archiv für Mikroskopische Anatomie, 9 (1873),pp. 413-418
|
[2] |
Andersen, J.S., Wilkinson, C.J., Mayor, T. et al. Proteomic characterization of the human centrosome by protein correlation profiling Nature, 426 (2003),pp. 570-574
|
[3] |
Aquino, D., Schonle, A., Geisler, C. et al. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores Nat. Methods, 8 (2011),pp. 353-359
|
[4] |
Baday, M., Cravens, A., Hastie, A. et al. Multicolor super-resolution DNA imaging for genetic analysis Nano Lett., 12 (2012),pp. 3861-3866
|
[5] |
Bates, M., Blosser, T.R., Zhuang, X.W. Short-range spectroscopic ruler based on a single-molecule optical switch Phys. Rev. Lett., 94 (2005),p. 108101
|
[6] |
Bates, M., Huang, B., Dempsey, G.T. et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes Science, 317 (2007),pp. 1749-1753
|
[7] |
Bates, M., Huang, B., Zhuang, X.W. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes Curr. Opin. Chem. Biol., 12 (2008),pp. 505-514
|
[8] |
Betzig, E., Patterson, G.H., Sougrat, R. et al. Imaging intracellular fluorescent proteins at nanometer resolution Science, 313 (2006),pp. 1642-1645
|
[9] |
Biteen, J.S., Goley, E.D., Shapiro, L. et al. Chemphyschem, 13 (2012),pp. 1007-1012
|
[10] |
Biteen, J.S., Thompson, M.A., Tselentis, N.K. et al. Nat. Methods, 5 (2008),pp. 947-949
|
[11] |
Bohn, M., Diesinger, P., Kaufmann, R. et al. Localization microscopy reveals expression-dependent parameters of chromatin nanostructure Biophys. J., 99 (2010),pp. 1358-1367
|
[12] |
Bopp, M.A., Jia, Y.W., Li, L.Q. et al. Fluorescence and photobleaching dynamics of single light-harvesting complexes Proc. Natl. Acad. Sci. USA, 94 (1997),pp. 10630-10635
|
[13] |
Bornens, M. The centrosome in cells and organisms Science, 335 (2012),pp. 422-426
|
[14] |
Brakemann, T., Stiel, A.C., Weber, G. et al. A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching Nat. Biotechnol., 29 (2011),pp. 942-947
|
[15] |
Buckers, J., Wildanger, D., Vicidomini, G. et al. Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses Opt. Express, 19 (2011),pp. 3130-3143
|
[16] |
Burnette, D.T., Sengupta, P., Dai, Y.H. et al. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 21081-21086
|
[17] |
Cattoni, D., Fiche, J., Nollmann, M. Single-molecule super-resolution imaging in bacteria Curr. Opin. Microbiol., 15 (2012),pp. 758-763
|
[18] |
Chakalova, L., Debrand, E., Mitchell, J.A. et al. Replication and transcription: shaping the landscape of the genome Nat. Rev. Genet., 6 (2005),pp. 669-677
|
[19] |
Chang, H., Zhang, M.S., Ji, W. et al. A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 4455-4460
|
[20] |
Chen, X., Liu, Y., Yang, X. et al.
|
[21] |
Cho, S., Jang, J., Song, C. et al. Simple super-resolution live-cell imaging based on diffusion-assisted Forster resonance energy transfer Sci. Rep., 3 (2013),p. 1208
|
[22] |
Chojnacki, J., Staudt, T., Glass, B. et al. Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy Science, 338 (2012),pp. 524-528
|
[23] |
Coltharp, C., Xiao, J. Superresolution microscopy for microbiology Cell. Microbiol., 14 (2012),pp. 1808-1818
|
[24] |
Cox, S., Rosten, E., Monypenny, J. et al. Bayesian localization microscopy reveals nanoscale podosome dynamics Nat. Methods, 9 (2012),pp. 195-200
|
[25] |
Cremer, C., Kaufmann, R., Gunkel, M. et al. Superresolution imaging of biological nanostructures by spectral precision distance microscopy Biotechnol. J., 6 (2011),pp. 1037-1051
|
[26] |
Dan, D., Lei, M., Yao, B.L. et al. DMD-based LED-illumination super-resolution and optical sectioning microscopy Sci. Rep., 3 (2013),p. 1116
|
[27] |
Dedecker, P., Mo, G.C.H., Dertinger, T. et al. Widely accessible method for superresolution fluorescence imaging of living systems Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 10909-10914
|
[28] |
Dempsey, G.T., Vaughan, J.C., Chen, K.H. et al. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging Nat. Methods, 8 (2011),pp. 1027-1036
|
[29] |
Dertinger, T., Colyer, R., Iyer, G. et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 22287-22292
|
[30] |
Dertinger, T., Heilemann, M., Vogel, R. et al. Superresolution optical fluctuation imaging with organic dyes Angew. Chem. Int. Ed. Engl., 49 (2010),pp. 9441-9443
|
[31] |
Ding, Y.C., Xi, P., Ren, Q.S. Hacking the optical diffraction limit: review on recent developments of fluorescence nanoscopy Chinese Sci. Bull., 56 (2011),pp. 1857-1876
|
[32] |
Donnert, G., Keller, J., Wurm, C.A. et al. Two-color far-field fluorescence nanoscopy Biophys. J., 92 (2007),pp. L67-L69
|
[33] |
Fitzpatrick, J.A.J., Yan, Q., Sieber, J.J. et al. STED nanoscopy in living cells using fluorogen activating proteins Bioconjug. Chem., 20 (2009),pp. 1843-1847
|
[34] |
Flors, C. DNA and chromatin imaging with super-resolution fluorescence microscopy based on single-molecule localization Biopolymers, 95 (2011),pp. 290-297
|
[35] |
Flors, C., Earnshaw, W.C. Super-resolution fluorescence microscopy as a tool to study the nanoscale organization of chromosomes Curr. Opin. Chem. Biol., 15 (2011),pp. 838-844
|
[36] |
Folling, J., Belov, V., Kunetsky, R. et al. Photochromic rhodamines provide nanoscopy with optical sectioning Angew. Chem. Int. Ed. Engl., 46 (2007),pp. 6266-6270
|
[37] |
Folling, J., Bossi, M., Bock, H. et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return Nat. Methods, 5 (2008),pp. 943-945
|
[38] |
Galbraith, C.G., Galbraith, J.A. Super-resolution microscopy at a glance J. Cell Sci., 124 (2011),pp. 1607-1611
|
[39] |
Geissbuehler, S., Dellagiacoma, C., Lasser, T. Comparison between SOFI and STORM Biomed. Opt. Express, 2 (2011),pp. 408-420
|
[40] |
Gordon, M.P., Ha, T., Selvin, P.R. Single-molecule high-resolution imaging with photobleaching Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 6462-6465
|
[41] |
Gould, T.J., Hess, S.T. Nanoscale biological fluorescence imaging: breaking the diffraction barrier Method. Cell Biol., 89 (2008),pp. 329-358
|
[42] |
Grotjohann, T., Testa, I., Leutenegger, M. et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP Nature, 478 (2011),pp. 204-208
|
[43] |
Gur, A., Zalevsky, Z., Mico, V. et al. The limitations of nonlinear fluorescence effect in super resolution saturated structured illumination microscopy system J. Fluoresc., 21 (2011),pp. 1075-1082
|
[44] |
Gustafsson, M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy J. Microsc., 198 (2000),pp. 82-87
|
[45] |
Gustafsson, M.G.L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 13081-13086
|
[46] |
Hao, X., Kuang, C., Gu, Z. et al. Super resolution microscopy of offline g-STED nanoscopy based on time-correlated single photon counting Chinese J. Lasers, 40 (2013),p. 0104001
|
[47] |
Heilemann, M., van de Linde, S., Schuttpelz, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes Angew. Chem. Int. Ed. Engl., 47 (2008),pp. 6172-6176
|
[48] |
Hein, B., Willig, K.I., Wurm, C.A. et al. Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins Biophys. J., 98 (2010),pp. 158-163
|
[49] |
Heintzmann, R. Saturated patterned excitation microscopy with two-dimensional excitation patterns Micron, 34 (2003),pp. 283-291
|
[50] |
Heintzmann, R., Jovin, T.M., Cremer, C. Saturated patterned excitation microscopy ‒ a concept for optical resolution improvement J. Opt. Soc. Am. A., 19 (2002),pp. 1599-1609
|
[51] |
Hell, S.W. Toward fluorescence nanoscopy Nat. Biotechnol., 21 (2003),pp. 1347-1355
|
[52] |
Hell, S.W. Far-field optical nanoscopy Science, 316 (2007),pp. 1153-1158
|
[53] |
Hell, S.W. Microscopy and its focal switch Nat. Methods, 6 (2009),pp. 24-32
|
[54] |
Hell, S.W., Dyba, M., Jakobs, S. Concepts for nanoscale resolution in fluorescence microscopy Curr. Opin. Neurobiol., 14 (2004),pp. 599-609
|
[55] |
Hell, S.W., Wichmann, J. Breaking the diffraction resolution limit by stimulated-emission-depletion fluorescence microscopy Opt. Lett., 19 (1994),pp. 780-782
|
[56] |
Hess, S.T., Girirajan, T.P.K., Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy Biophys. J., 91 (2006),pp. 4258-4272
|
[57] |
Hofmann, M., Eggeling, C., Jakobs, S. et al. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 17565-17569
|
[58] |
Holden, S.J., Uphoff, S., Kapanidis, A.N. DAOSTORM: an algorithm for high-density super-resolution microscopy Nat. Methods, 8 (2011),pp. 279-280
|
[59] |
Huang, B., Babcock, H., Zhuang, X.W. Breaking the diffraction barrier: super-resolution imaging of cells Cell, 143 (2010),pp. 1047-1058
|
[60] |
Huang, B., Bates, M., Dempsey, G. et al. PHYS 168-sub-diffraction-limit imaging by stochastic optical reconstruction microscopy Abstr. Pap. Am. Chem. S, 234 (2007)
|
[61] |
Huang, B., Bates, M., Zhuang, X.W. Super-resolution fluorescence microscopy Annu. Rev. Biochem., 78 (2009),pp. 993-1016
|
[62] |
Huang, B., Wang, W.Q., Bates, M. et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy Science, 319 (2008),pp. 810-813
|
[63] |
Huang, P.S., Zhang, S. Fast three-step phase-shifting algorithm Appl. Opt., 45 (2006),pp. 5086-5091
|
[64] |
Jakobsen, L., Vanselow, K., Skogs, M. et al. Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods EMBO J., 30 (2011),pp. 1520-1535
|
[65] |
Jing, J.P., Reed, J., Huang, J. et al. Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 8046-8051
|
[66] |
Jones, S.A., Shim, S.H., He, J. et al. Fast, three-dimensional super-resolution imaging of live cells Nat. Methods, 8 (2011)
|
[67] |
Juette, M.F., Gould, T.J., Lessard, M.D. et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples Nat. Methods, 5 (2008),pp. 527-529
|
[68] |
Klar, T.A., Hell, S.W. Subdiffraction resolution in far-field fluorescence microscopy Opt. Lett., 24 (1999),pp. 954-956
|
[69] |
Klar, T.A., Jakobs, S., Dyba, M. et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 8206-8210
|
[70] |
Koster, A.J., Klumperman, J. Electron microscopy in cell biology: integrating structure and function Nat. Rev. Mol. Cell Biol., 4 (2003),pp. SS6-SS10
|
[71] |
Kuang, C., Li, S., Liu, W. et al. Breaking the diffraction barrier using fluorescence emission difference microscopy Sci. Rep., 3 (2013),p. 1441
|
[72] |
Lakowicz, J.R. Radiative decay engineering: biophysical and biomedical applications Anal. Biochem., 298 (2001),pp. 1-24
|
[73] |
Larson, D.R., Thompson, R., Webb, W.W. Precise nanometer localization analysis for individual fluorescent probes Biophys. J., 82 (2002),pp. 2775-2783
|
[74] |
Lau, L., Lee, Y.L., Sahl, S.J. et al. STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein Biophys. J., 102 (2012),pp. 2926-2935
|
[75] |
Lawo, S., Hasegan, M., Gupta, G.D. et al. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material Nat. Cell Biol., 14 (2012),pp. 1148-1158
|
[76] |
Lehmann, M., Rocha, S., Mangeat, B. et al. Quantitative multicolor super-resolution microscopy reveals tetherin HIV-1 interaction PLoS Pathog., 7 (2011),p. e1002456
|
[77] |
Lelek, M., Di Nunzio, F., Henriques, R. et al. Superresolution imaging of HIV in infected cells with FlAsH-PALM Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 8564-8569
|
[78] |
Leung, B.O., Chou, K.C. Review of super-resolution fluorescence microscopy for biology Appl. Spectrosc., 65 (2011),pp. 967-980
|
[79] |
Lew, M.D., Lee, S.F., Ptacin, J.L. et al. Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus Proc. Natl. Acad. Sci. USA, 108 (2011),pp. E1102-E1110
|
[80] |
Lidke, K.A. Super resolution for common probes and common microscopes Nat. Methods, 9 (2012),pp. 139-141
|
[81] |
Liu, Y.J., Ding, Y.C., Alonas, E. et al. Achieving lambda/10 resolution CW STED nanoscopy with a Ti: sapphire oscillator (2012)
|
[82] |
Liu, Z.W., Lee, H., Xiong, Y. et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects Science, 315 (2007),p. 1686
|
[83] |
Lubeck, E., Cai, L. Single-cell systems biology by super-resolution imaging and combinatorial labeling Nat. Methods, 9 (2012),pp. 743-748
|
[84] |
Luders, J. The amorphous pericentriolar cloud takes shape Nat. Cell Biol., 14 (2012),pp. 1126-1128
|
[85] |
Malkusch, S., Muranyi, W., Müller, B. et al. Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution Histochem. Cell Biol., 139 (2013),pp. 173-179
|
[86] |
Matsuda, A., Shao, L., Boulanger, J. et al. Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP-histones PLoS ONE, 5 (2010),p. e12768
|
[87] |
McKinney, S.A., Murphy, C.S., Hazelwood, K.L. et al. A bright and photostable photoconvertible fluorescent protein Nat. Methods, 6 (2009),pp. 131-133
|
[88] |
Mennella, V., Keszthelyi, B., McDonald, K.L. et al. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization Nat. Cell Biol., 14 (2012),pp. 1159-1168
|
[89] |
Meyer, L., Wildanger, D., Medda, R. et al. Dual-color STED microscopy at 30-nm focal-plane resolution Small, 4 (2008),pp. 1095-1100
|
[90] |
Mukamel, E.A., Babcock, H., Zhuang, X.W. Statistical deconvolution for superresolution fluorescence microscopy Biophys. J., 102 (2012),pp. 2391-2400
|
[91] |
Muller, P., Schmitt, E., Jacob, A. et al. COMBO-FISH enables high precision localization microscopy as a prerequisite for nanostructure analysis of genome loci Int. J. Mol. Sci., 11 (2010),pp. 4094-4105
|
[92] |
Nienhaus, G.U. A fatigue-resistant photoswitchable fluorescent protein for optical nanoscopy Angew. Chem. Int. Ed. Engl., 51 (2012),pp. 1312-1314
|
[93] |
Paintrand, M., Moudjou, M., Delacroix, H. et al. Centrosome organization and centriole architecture: their sensitivity to divalent cations J. Struct. Biol., 108 (1992),pp. 107-128
|
[94] |
Panchenko, T., Sorensen, T.C., Woodcock, C.L. et al. Replacement of histone H3 with CENP-A directs global nucleosome array condensation and loosening of nucleosome superhelical termini Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 16588-16593
|
[95] |
Patterson, G., Davidson, M., Manley, S. et al. Superresolution imaging using single-molecule localization Annu. Rev. Phys. Chem., 61 (2010),pp. 345-367
|
[96] |
Patterson, G.H., Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells Science, 297 (2002),pp. 1873-1877
|
[97] |
Pavani, S.R.P., Thompson, M.A., Biteen, J.S. et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 2995-2999
|
[98] |
Pellett, P.A., Sun, X.L., Gould, T.J. et al. Two-color STED microscopy in living cells Biomed. Opt. Express, 2 (2011),pp. 2364-2371
|
[99] |
Pereira, C.F., Rossy, J., Owen, D.M. et al. HIV taken by STORM: super-resolution fluorescence microscopy of a viral infection Virol. J., 9 (2012),p. 84
|
[100] |
Pohl, D.W., Denk, W., Lanz, M. Optical stethoscopy: image recording with resolution lambda/20 Appl. Phys. Lett., 44 (1984),pp. 651-653
|
[101] |
Ptacin, J.L., Lee, S.F., Garner, E.C. et al. A spindle-like apparatus guides bacterial chromosome segregation Nat. Cell Biol., 12 (2010),pp. 791-798
|
[102] |
Punge, A., Rizzoli, S.O., Jahn, R. et al. 3D reconstruction of high-resolution STED microscope images Microsc. Res. Tech., 71 (2008),pp. 644-650
|
[103] |
Qu, X.H., Wu, D., Mets, L. et al. Nanometer-localized multiple single-molecule fluorescence microscopy Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 11298-11303
|
[104] |
Quan, T.W., Zhu, H.Y., Liu, X.M. et al. High-density localization of active molecules using structured sparse model and Bayesian information criterion Opt. Express, 19 (2011),pp. 16963-16974
|
[105] |
Rego, E.H., Shao, L., Macklin, J.J. et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution Proc. Natl. Acad. Sci. USA, 109 (2012),pp. E135-E143
|
[106] |
Reymann, J., Baddeley, D., Gunkel, M. et al. High-precision structural analysis of subnuclear complexes in fixed and live cells via spatially modulated illumination (SMI) microscopy Chromosome Res., 16 (2008),pp. 367-382
|
[107] |
Ribeiro, S.A., Vagnarelli, P., Dong, Y.M. et al. A super-resolution map of the vertebrate kinetochore Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 10484-10489
|
[108] |
Rittweger, E., Rankin, B.R., Westphal, V. et al. Fluorescence depletion mechanisms in super-resolving STED microscopy Chem. Phys. Lett., 442 (2007),pp. 483-487
|
[109] |
Rust, M.J., Bates, M., Zhuang, X.W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) Nat. Methods, 3 (2006),pp. 793-795
|
[110] |
Sauer, M. Reversible molecular photoswitches: A key technology for nanoscience and fluorescence imaging Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 9433-9434
|
[111] |
Schermelleh, L., Carlton, P.M., Haase, S. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy Science, 320 (2008),pp. 1332-1336
|
[112] |
Schermelleh, L., Heintzmann, R., Leonhardt, H. A guide to super-resolution fluorescence microscopy J. Cell Biol., 190 (2010),pp. 165-175
|
[113] |
Schmid, S.L. The mechanism of receptor-mediated endocytosis: more questions than answers Bioessays, 14 (1992),pp. 589-596
|
[114] |
Schmid, S.L. Clathrin-coated vesicle formation and protein sorting: an integrated process Annu. Rev. Biochem., 66 (1997),pp. 511-548
|
[115] |
Schmidt, R., Wurm, C.A., Punge, A. et al. Mitochondrial cristae revealed with focused light Nano Lett., 9 (2009),pp. 2508-2510
|
[116] |
Shaner, N.C., Lin, M.Z., McKeown, M.R. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins Nat. Methods, 5 (2008),pp. 545-551
|
[117] |
Shroff, H., Galbraith, C.G., Galbraith, J.A. et al. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics Nat. Methods, 5 (2008),pp. 417-423
|
[118] |
Shtengel, G., Galbraith, J.A., Galbraith, C.G. et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 3125-3130
|
[119] |
Sigrist, S.J., Sabatini, B.L. Optical super-resolution microscopy in neurobiology Curr. Opin. Neurobiol., 22 (2012),pp. 86-93
|
[120] |
Smolyaninov, I.I., Hung, Y.J., Davis, C.C. Magnifying superlens in the visible frequency range Science, 315 (2007),pp. 1699-1701
|
[121] |
Tonnesen, J., Nadrigny, F., Willig, K.I. et al. Two-color STED microscopy of living synapses using a single laser-beam pair Biophys. J., 101 (2011),pp. 2545-2552
|
[122] |
Tonnesen, J., Nagerl, U.V. Superresolution imaging for neuroscience Exp. Neurol., 242 (2013),pp. 33-40
|
[123] |
van de Linde, S., Heilemann, M., Sauer, M. Live-cell super-resolution imaging with synthetic fluorophores Annu. Rev. Phys. Chem., 63 (2012),pp. 519-540
|
[124] |
Vaughan, J.C., Zhuang, X. New fluorescent probes for super-resolution imaging Nat. Biotechnol., 29 (2011),pp. 880-881
|
[125] |
Vorobjev, I.A., Chentsov, Y.S. The ultrastructure of centriole in mammalian tissue-culture cells Cell Biol. Int. Rep., 4 (1980),pp. 1037-1044
|
[126] |
Wang, W.Q., Li, G.W., Chen, C.Y. et al. Chromosome organization by a nucleoid-associated protein in live bacteria Science, 333 (2011),pp. 1445-1449
|
[127] |
Wang, Y., Quan, T.W., Zeng, S.Q. et al. PALMER: a method capable of parallel localization of multiple emitters for high-density localization microscopy Opt. Express, 20 (2012),pp. 16039-16049
|
[128] |
Westphal, V., Rizzoli, S.O., Lauterbach, M.A. et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement Science, 320 (2008),pp. 246-249
|
[129] |
Wiedenmann, J., Ivanchenko, S., Oswald, F. et al. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 15905-15910
|
[130] |
Willig, K.I., Rizzoli, S.O., Westphal, V. et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis Nature, 440 (2006),pp. 935-939
|
[131] |
Willig, K.I., Stiel, A.C., Brakemann, T. et al. Dual-label STED nanoscopy of living cells using photochromism Nano Lett., 11 (2011),pp. 3970-3973
|
[132] |
Wombacher, R., Cornish, V.W. Chemical tags: applications in live cell fluorescence imaging J. Biophotonics, 4 (2011),pp. 391-402
|
[133] |
Wombacher, R., Heidbreder, M., van de Linde, S. et al. Live-cell super-resolution imaging with trimethoprim conjugates Nat. Methods, 7 (2010),pp. 717-719
|
[134] |
Wu, M., Huang, B., Graham, M. et al. Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system Nat. Cell Biol., 12 (2010),pp. 902-908
|
[135] |
Xiao, M., Gordon, M.P., Phong, A. et al. Determination of haplotypes from single DNA molecules: a method for single-molecule barcoding Hum. Mutat., 28 (2007),pp. 913-921
|
[136] |
Xiao, M., Phong, A., Ha, C. et al. Rapid DNA mapping by fluorescent single molecule detection Nucleic Acids Res., 35 (2007),p. e16
|
[137] |
Xiao, M., Wan, E., Chu, C. et al. Direct determination of haplotypes from single DNA molecules Nat. Methods, 6 (2009),pp. 199-201
|
[138] |
Zessin, P.J.M., Finan, K., Heilemann, M. Super-resolution fluorescence imaging of chromosomal DNA J. Struct. Biol., 177 (2012),pp. 344-348
|
[139] |
Zhang, M.S., Chang, H., Zhang, Y.D. et al. Rational design of true monomeric and bright photoactivatable fluorescent proteins Nat. Methods, 9 (2012),pp. 727-729
|
[140] |
Zhu, L., Zhang, W., Elnatan, D. et al. Faster STORM using compressed sensing Nat. Methods, 9 (2012),pp. 721-723
|