[1] |
Aggarwal, S., Pittenger, M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses Blood, 105 (2005),pp. 1815-1822
|
[2] |
Arruda, V.R. Toward gene therapy for hemophilia A with novel adenoviral vectors: successes and limitations in canine models J. Thromb. Haemost., 4 (2006),pp. 1215-1217
|
[3] |
Becker, S., Simpson, J.C., Pepperkok, R. et al. Confocal microscopy analysis of native, full length and B-domain deleted coagulation factor VIII trafficking in mammalian cells Thromb. Haemost., 92 (2004),pp. 23-35
|
[4] |
Brown, B.D., Shi, C.X., Rawle, F.E. et al. Factors influencing therapeutic efficacy and the host immune response to helper-dependent adenoviral gene therapy in hemophilia A mice J. Thromb. Haemost., 2 (2004),pp. 111-118
|
[5] |
Chuah, M.K., VanDamme, A., Zwinnen, H. et al. Long-term persistence of human bone marrow stromal cells transduced with factor VIII-retroviral vectors and transient production of therapeutic levels of human factor VIII in nonmyeloablated immunodeficient mice Hum. Gene Ther., 11 (2000),pp. 729-738
|
[6] |
Chuah, M.K., Collen, D., VandenDriessche, T. Clinical gene transfer studies for hemophilia A Semin. Thromb. Hemost., 30 (2004),pp. 249-256
|
[7] |
Colletti, E.J., Airey, J.A., Liu, W. et al. Generation of tissue-specific cells by MSC does not require fusion or donor-to-host mitochondrial/membrane transfer Stem Cell Res., 2 (2009),pp. 125-138
|
[8] |
da Silva Meirelles, L., Chagastelles, P.C., Nardi, N.B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues J. Cell Sci., 119 (2006),pp. 2204-2213
|
[9] |
Deans, R.J., Moseley, A.B. Mesenchymal stem cells: biology and potential clinical uses Exp. Hematol., 28 (2000),pp. 875-884
|
[10] |
Doering, C.B. Retroviral modification of mesenchymal stem cells for gene therapy of hemophilia Methods Mol. Biol., 433 (2008),pp. 203-212
|
[11] |
Doering, C.B., Spencer, H.T. Advancements in gene transfer-based therapy for hemophilia A Expert Rev. Hematol., 2 (2009),pp. 673-683
|
[12] |
Follenzi, A., Benten, D., Novikoff, P. et al. Transplanted endothelial cells repopulate the liver endothelium and correct the phenotype of hemophilia A mice J. Clin. Invest., 118 (2008),pp. 935-945
|
[13] |
Gangadharan, B., Parker, E.T., Ide, L.M. et al. High-level expression of porcine factor VIII from genetically modified bone marrow-derived stem cells Blood, 107 (2006),pp. 3859-3864
|
[14] |
Gan, S.U., Kon, O.L., Calne, R.Y. Genetic engineering for haemophilia A Exp. Opin. Biol. Ther., 6 (2006),pp. 1023-1030
|
[15] |
Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCIDX1 Science, 302 (2003),pp. 415-419
|
[16] |
Hacein-Bey-Abina, S., Garrigue, A., Wang, G.P. et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1 J. Clin. Invest., 118 (2008),pp. 3132-3142
|
[17] |
Hough, C., Lillicrap, D. Gene therapy for hemophilia: an imperative to succeed J. Thromb. Haemost., 3 (2005),pp. 1195-1205
|
[18] |
Huang, Z., Yan, J.B., Huang, Y. et al. High expression of human FIX (hFIX) in transgenic mice directed by goat beta-casein gene promoter Acta Genet. Sin., 29 (2002),pp. 206-211
|
[19] |
Hu, C., Cela, R.G., Suzuki, M. et al. Neonatal help-dependent adenoviral vector gene therapy mediates correction of hemophilia A and tolerance to human factor VIII Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 2082-2087
|
[20] |
Ide, L.M., Gangadharan, B., Chiang, K.Y. et al. Hematopoietic stem-cell gene therapy of hemophilia A incorporating a porcine factor VIII transgene and nonmyeloablative conditioning regimens Blood, 110 (2007),pp. 2855-2863
|
[21] |
Kang, Y., Xie, L., Tran, D.T. et al. Blood, 106 (2005),pp. 1552-1558
|
[22] |
Kootstra, N.A., Matsumura, R., Verma, I.M. Efficient production of human FVIII in hemophilic mice using lentiviral vectors Mol. Ther., 7 (2003),pp. 623-631
|
[23] |
Kumaran, V., Benten, D., Follenzi, A. et al. Transplantation of endothelial cells corrects the phenotype in hemophilia A mice J. Thromb. Haemost., 3 (2005),pp. 2022-2031
|
[24] |
Le Blanc, K., Tammik, L., Sundberg, B. et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex Scand. J. Immunol., 57 (2003),pp. 11-20
|
[25] |
Le Blanc, K., Ringden, O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation Biol. Blood Marrow Transplant., 11 (2005),pp. 321-334
|
[26] |
Lin, Y., Chang, L., Solovey, A. et al. Use of blood outgrowth endothelial cells for gene therapy for hemophilia A Blood, 99 (2002),pp. 457-462
|
[27] |
Liu, H., Kemeny, D.M., Heng, B.C. et al. The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells J. Immunol., 176 (2006),pp. 2864-2871
|
[28] |
Lozier, J.N., Metzger, M.E., Donahue, R.E. et al. Adenovirus-mediated expression of human coagulation factor IX in the rhesus macaque is associated with dose-limiting toxicity Blood, 94 (1999),pp. 3968-3975
|
[29] |
Manno, C.S., Pierce, G.F., Arruda, V.R. et al. Successful transduction of liver in hemophilia by AAV factor IX and limitations imposed by the host immune response Nat. Med., 12 (2006),pp. 342-347
|
[30] |
Matsui, H., Shibata, M., Brown, B. et al. Stem Cells, 25 (2007),pp. 2660-2669
|
[31] |
Miller, D.G., Trobridge, G.D., Petek, L.M. et al. Large-scale analysis of adeno-associated virus vector integration sites in normal human cells J. Virol., 79 (2005),pp. 11434-11442
|
[32] |
Moayeri, M., Ramezani, A., Morgan, R.A. et al. Sustained phenotypic correction of hemophilia a mice following oncoretroviral-mediated expression of a bioengineered human factor VIII gene in long-term hematopoietic repopulating cells Mol. Ther., 10 (2004),pp. 892-902
|
[33] |
Modlich, U., Bohne, J., Schmidt, M. et al. Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity Blood, 108 (2006),pp. 2545-2553
|
[34] |
Modlich, U., Schambach, A., Brugman, M.H. et al. Leukemia induction after a single retroviral vector insertion in Evi1 or Prdm16 Leukemia, 22 (2008),pp. 1519-1528
|
[35] |
Ott, M.G., Schmidt, M., Schwarzwaelder, K. et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation by MDS1-EVI1, PRDM16 or SETBP1 Nat. Med., 12 (2006),pp. 401-409
|
[36] |
Porada, C.D., Almeida-Porada, G. Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery Adv. Drug Deliv. Rev., 62 (2010),pp. 1156-1166
|
[37] |
Porada, C.D., Sanada, C., Kuo, C.J. et al. Phenotypic correction of hemophilia A in sheep by postnatal intraperitoneal transplantation of FVIII-expressing MSC Exp. Hematol., 39 (2011),pp. 1124-1135
|
[38] |
Powell, J.S., Ragni, M.V., , Lusher, J.M. et al. Blood, 102 (2003),pp. 2038-2045
|
[39] |
Ramezani, A., Hawley, T.S., Hawley, R.G. Reducing the genotoxic potential of retroviral vectors Methods. Mol. Biol., 434 (2008),pp. 183-203
|
[40] |
Ramezani, A., Hawley, R.G. Correction of murine hemophilia A following nonmyeloablative transplantation of hematopoietic stem cells engineered to encode an enhanced human factor VIII variant using a safety-augmented retroviral vector Blood, 114 (2009),pp. 526-534
|
[41] |
Sarkar, R., Gao, G.P., Chirmule, N. et al. Partial correction of murine hemophilia A with nonantigenic murine factor VIII Hum. Gene Ther., 11 (2000),pp. 881-894
|
[42] |
Sanada, C., Kuo, C.J., Colletti, E.J. et al. Mesenchymal stem cells contribute to endogenous FVIII:c production J. Cell Physiol., 228 (2013),pp. 1010-1016
|
[43] |
Themis, M., Waddington, S.N., Schmidt, M. et al. Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice Mol. Ther., 12 (2005),pp. 763-771
|
[44] |
Thorrez, L., VandenDriessche, T., Collen, D. et al. Preclinical gene therapy studies for hemophilia using adenoviral vectors Semin. Thromb. Hemost., 30 (2004),pp. 173-183
|
[45] |
Van Damme, A., Chuah, M.K., Collen, D. et al. Onco-retroviral and lentiviral vector-based gene therapy for hemophilia: preclinical studies Semin. Thromb. Hemost., 30 (2004),pp. 185-195
|
[46] |
Van Damme, A., Thorrez, L., Ma, L. et al. Efficient lentiviral transduction and improved engraftment of human bone marrow mesenchymal cells Stem Cells, 24 (2006),pp. 896-907
|
[47] |
VandenDriessche, T., Collen, D., Chuah, M.K. Viral vector-mediated gene therapy for hemophilia Curr. Gene Ther., 1 (2001),pp. 301-315
|
[48] |
VandenDriessche, T., Collen, D., Chuah, M.K. Biosafety of onco-retroviral vectors Curr. Gene Ther., 3 (2003),pp. 501-515
|
[49] |
Wang, W., Merchlinsky, M., Inman, J. et al. Identification of a novel immunodominant cytotoxic T lymphocyte epitope derived from human factor VIII in a murine model of hemophilia A Thromb. Res., 116 (2005),pp. 335-344
|
[50] |
Wion, K.L., Kelly, D., Summerfield, J.A. et al. Distribution of factor VIII mRNA and antigen in human liver and other tissues Nature, 317 (1985),pp. 726-729
|
[51] |
Yadav, N., Kanjirakkuzhiyil, S., Kumar, S. et al. The therapeutic effect of bone marrow-derived liver cells in the phenotypic correction of murine hemophilia A Blood, 114 (2009),pp. 4552-4561
|
[52] |
Yadav, N., Kanjirakkuzhiyil, S., Ramakrishnan, M. et al. Factor VIII can be synthesized in hemophilia A mice liver by bone marrow progenitor cell-derived hepatocytes and sinusoidal endothelial cells Stem Cells Dev., 21 (2012),pp. 110-120
|
[53] |
Yin, J., Wang, H.L., Wang, X.F. et al. Non-viral vector mediating human coagulation factor VIII gene expression in mouse 32D cell line J. Exp. Hematol., 12 (2004),pp. 721-725
|