[1] |
Andrews, R.M., Kubacka, I., Chinnery, P.F. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA Nat. Genet., 23 (1999),p. 147
|
[2] |
Chinnery, P.F., Thorburn, D.R., Samuels, D.C. et al. The inheritance of mitochondrial DNA heteroplasmy: random drift, selection or both? Trends Genet., 16 (2000),pp. 500-505
|
[3] |
Cock, P.J., Fields, C.J., Goto, N. et al. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants Nucleic Acids Res., 38 (2010),pp. 1767-1771
|
[4] |
Cree, L.M., Samuels, D.C., Lopes, S. et al. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes Nat. Genet., 40 (2008),pp. 249-254
|
[5] |
Curwen, G.B., Cadwell, K.K., Winther, J.F. et al. The heritability of G2 chromosomal radiosensitivity and its association with cancer in Danish cancer survivors and their offspring Int. J. Radiat. Biol., 86 (2010),pp. 986-995
|
[6] |
Curwen, G.B., Winther, J.F., Tawn, E.J. et al. G(2) chromosomal radiosensitivity in Danish survivors of childhood and adolescent cancer and their offspring Br. J. Cancer, 93 (2005),pp. 1038-1045
|
[7] |
Danecek, P., Auton, A., Abecasis, G. et al. The variant call format and VCFtools Bioinformatics, 27 (2011),pp. 2156-2158
|
[8] |
Durbin, R.M., Altshuler, D.L., Abecasis, G.R. et al. A map of human genome variation from population-scale sequencing Nature, 467 (2010),pp. 1061-1073
|
[9] |
Elson, J.L., Samuels, D.C., Turnbull, D.M. et al. Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age Am. J. Hum. Genet., 68 (2001),pp. 802-806
|
[10] |
Goto, H., Dickins, B., Afgan, E. et al. Genome Biol., 12 (2011),p. R59
|
[11] |
Guo, Y., Cai, Q., Samuels, D.C. et al. The use of next generation sequencing technology to study the effect of radiation therapy on mitochondrial DNA mutation Mutat. Res., 744 (2012),pp. 154-160
|
[12] |
Guo, Y., Li, J., Li, C.I. et al. The effect of strand bias in Illumina short-read sequencing data BMC Genomics, 13 (2012),p. 666
|
[13] |
Guo, Y., Li, J., Li, C.I. et al. MitoSeek: extracting mitochondria information and performing high-throughput mitochondria sequencing analysis Bioinformatics, 29 (2013),pp. 1210-1211
|
[14] |
Holt, I.J., Harding, A.E., Petty, R.K. et al. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy Am. J. Hum. Genet., 46 (1990),pp. 428-433
|
[15] |
Kann, L.M., Rosenblum, E.B., Rand, D.M. Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 2372-2377
|
[16] |
Koboldt, D.C., Chen, K., Wylie, T. et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples Bioinformatics, 25 (2009),pp. 2283-2285
|
[17] |
Lewis, P.D., Baxter, P., Paul Griffiths, A. et al. Detection of damage to the mitochondrial genome in the oncocytic cells of Warthin's tumour J. Pathol., 191 (2000),pp. 274-281
|
[18] |
Li, H., Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform Bioinformatics, 25 (2009),pp. 1754-1760
|
[19] |
Li, H., Handsaker, B., Wysoker, A. et al. The sequence alignment/map format and SAMtools Bioinformatics, 25 (2009),pp. 2078-2079
|
[20] |
Li, M., Schonberg, A., Schaefer, M. et al. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes Am. J. Hum. Genet., 87 (2010),pp. 237-249
|
[21] |
Li, M., Stoneking, M. A new approach for detecting low-level mutations in next-generation sequence data Genome Biol., 13 (2012),p. R34
|
[22] |
Lombes, A., Diaz, C., Romero, N.B. et al. Analysis of the tissue distribution and inheritance of heteroplasmic mitochondrial DNA point mutation by denaturing gradient gel electrophoresis in MERRF syndrome Neuromuscul. Disord., 2 (1992),pp. 323-330
|
[23] |
McKenna, A., Hanna, M., Banks, E. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data Genome Res., 20 (2010),pp. 1297-1303
|
[24] |
Ng, S.B., Buckingham, K.J., Lee, C. et al. Exome sequencing identifies the cause of a Mendelian disorder Nat. Genet., 42 (2010),pp. 30-35
|
[25] |
Park, J.S., Sharma, L.K., Li, H. et al. Hum. Mol. Genet., 18 (2009),pp. 1578-1589
|
[26] |
Payne, B.A., Wilson, I.J., Yu-Wai-Man, P. et al. Universal heteroplasmy of human mitochondrial DNA Hum. Mol. Genet., 22 (2013),pp. 384-390
|
[27] |
Pereira, L., Freitas, F., Fernandes, V. et al. The diversity present in 5140 human mitochondrial genomes Am. J. Hum. Genet., 84 (2009),pp. 628-640
|
[28] |
Robin, E.D., Wong, R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells J. Cell. Physiol., 136 (1988),pp. 507-513
|
[29] |
Simon, D.K., Friedman, J., Breakefield, X.O. et al. A heteroplasmic mitochondrial complex I gene mutation in adult-onset dystonia Neurogenetics, 4 (2003),pp. 199-205
|
[30] |
Smigrodzki, R.M., Khan, S.M. Mitochondrial microheteroplasmy and a theory of aging and age-related disease Rejuvenation Res., 8 (2005),pp. 172-198
|
[31] |
Sondheimer, N., Glatz, C.E., Tirone, J.E. et al. Neutral mitochondrial heteroplasmy and the influence of aging Hum. Mol. Genet., 20 (2011),pp. 1653-1659
|
[32] |
Stoneking, M. Hypervariable sites in the mtDNA control region are mutational hotspots Am. J. Hum. Genet., 67 (2000),pp. 1029-1032
|
[33] |
Tang, S., Huang, T. Characterization of mitochondrial DNA heteroplasmy using a parallel sequencing system Biotechniques, 48 (2010),pp. 287-296
|
[34] |
Tawn, E.J., Rees, G.S., Leith, C. et al. Germline minisatellite mutations in survivors of childhood and young adult cancer treated with radiation Int. J. Radiat. Biol., 87 (2011),pp. 330-340
|
[35] |
Tawn, E.J., Whitehouse, C.A., Winther, J.F. et al. Chromosome analysis in childhood cancer survivors and their offspring – no evidence for radiotherapy-induced persistent genomic instability Mutat. Res., 583 (2005),pp. 198-206
|
[36] |
van Oven, M., Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation Hum. Mutat., 30 (2009),pp. E386-E394
|
[37] |
Wai, T., Teoli, D., Shoubridge, E.A. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes Nat. Genet., 40 (2008),pp. 1484-1488
|
[38] |
Wong, L.J., Wong, H., Liu, A. Intergenerational transmission of pathogenic heteroplasmic mitochondrial DNA Genet. Med., 4 (2002),pp. 78-83
|
[39] |
Wonnapinij, P., Chinnery, P.F., Samuels, D.C. The distribution of mitochondrial DNA heteroplasmy due to random genetic drift Am. J. Hum. Genet., 83 (2008),pp. 582-593
|
[40] |
Wonnapinij, P., Chinnery, P.F., Samuels, D.C. Previous estimates of mitochondrial DNA mutation level variance did not account for sampling error: comparing the mtDNA genetic bottleneck in mice and humans Am. J. Hum. Genet., 86 (2010),pp. 540-550
|
[41] |
Yao, Y.G., Kajigaya, S., Feng, X. et al. Accumulation of mtDNA variations in human single CD34+ cells from maternally related individuals: effects of aging and family genetic background Stem Cell Res., 10 (2013),pp. 361-370
|