5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 12
Dec.  2013
Turn off MathJax
Article Contents

Very Low-Level Heteroplasmy mtDNA Variations Are Inherited in Humans

doi: 10.1016/j.jgg.2013.10.003
More Information
  • Corresponding author: E-mail address: yan.guo@vanderbilt.edu (Yan Guo); E-mail address: yu.shyr@vanderbilt.edu (Yu Shyr)
  • Received Date: 2013-06-22
  • Accepted Date: 2013-10-27
  • Rev Recd Date: 2013-10-24
  • Available Online: 2013-12-08
  • Publish Date: 2013-12-20
  • Little is known about the inheritance of very low heteroplasmy mitochondria DNA (mtDNA) variations. Even with the development of new next-generation sequencing methods, the practical lower limit of measured heteroplasmy is still about 1% due to the inherent noise level of the sequencing. In this study, we sequenced the mitochondrial genome of 44 individuals using Illumina high-throughput sequencing technology and obtained high-coverage mitochondria sequencing data. Our study population contains many mother–offspring pairs. This unique study design allows us to bypass the usual heteroplasmy limitation by analyzing the correlation of mutation levels at each position in the mtDNA sequence between maternally related pairs and non-related pairs. The study showed that very low heteroplasmy variants, down to almost 0.1%, are inherited maternally and that this inheritance begins to decrease at about 0.5%, corresponding to a bottleneck of about 200 mtDNA.
  • loading
  • [1]
    Andrews, R.M., Kubacka, I., Chinnery, P.F. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA Nat. Genet., 23 (1999),p. 147
    [2]
    Chinnery, P.F., Thorburn, D.R., Samuels, D.C. et al. The inheritance of mitochondrial DNA heteroplasmy: random drift, selection or both? Trends Genet., 16 (2000),pp. 500-505
    [3]
    Cock, P.J., Fields, C.J., Goto, N. et al. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants Nucleic Acids Res., 38 (2010),pp. 1767-1771
    [4]
    Cree, L.M., Samuels, D.C., Lopes, S. et al. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes Nat. Genet., 40 (2008),pp. 249-254
    [5]
    Curwen, G.B., Cadwell, K.K., Winther, J.F. et al. The heritability of G2 chromosomal radiosensitivity and its association with cancer in Danish cancer survivors and their offspring Int. J. Radiat. Biol., 86 (2010),pp. 986-995
    [6]
    Curwen, G.B., Winther, J.F., Tawn, E.J. et al. G(2) chromosomal radiosensitivity in Danish survivors of childhood and adolescent cancer and their offspring Br. J. Cancer, 93 (2005),pp. 1038-1045
    [7]
    Danecek, P., Auton, A., Abecasis, G. et al. The variant call format and VCFtools Bioinformatics, 27 (2011),pp. 2156-2158
    [8]
    Durbin, R.M., Altshuler, D.L., Abecasis, G.R. et al. A map of human genome variation from population-scale sequencing Nature, 467 (2010),pp. 1061-1073
    [9]
    Elson, J.L., Samuels, D.C., Turnbull, D.M. et al. Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age Am. J. Hum. Genet., 68 (2001),pp. 802-806
    [10]
    Goto, H., Dickins, B., Afgan, E. et al. Genome Biol., 12 (2011),p. R59
    [11]
    Guo, Y., Cai, Q., Samuels, D.C. et al. The use of next generation sequencing technology to study the effect of radiation therapy on mitochondrial DNA mutation Mutat. Res., 744 (2012),pp. 154-160
    [12]
    Guo, Y., Li, J., Li, C.I. et al. The effect of strand bias in Illumina short-read sequencing data BMC Genomics, 13 (2012),p. 666
    [13]
    Guo, Y., Li, J., Li, C.I. et al. MitoSeek: extracting mitochondria information and performing high-throughput mitochondria sequencing analysis Bioinformatics, 29 (2013),pp. 1210-1211
    [14]
    Holt, I.J., Harding, A.E., Petty, R.K. et al. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy Am. J. Hum. Genet., 46 (1990),pp. 428-433
    [15]
    Kann, L.M., Rosenblum, E.B., Rand, D.M. Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 2372-2377
    [16]
    Koboldt, D.C., Chen, K., Wylie, T. et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples Bioinformatics, 25 (2009),pp. 2283-2285
    [17]
    Lewis, P.D., Baxter, P., Paul Griffiths, A. et al. Detection of damage to the mitochondrial genome in the oncocytic cells of Warthin's tumour J. Pathol., 191 (2000),pp. 274-281
    [18]
    Li, H., Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform Bioinformatics, 25 (2009),pp. 1754-1760
    [19]
    Li, H., Handsaker, B., Wysoker, A. et al. The sequence alignment/map format and SAMtools Bioinformatics, 25 (2009),pp. 2078-2079
    [20]
    Li, M., Schonberg, A., Schaefer, M. et al. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes Am. J. Hum. Genet., 87 (2010),pp. 237-249
    [21]
    Li, M., Stoneking, M. A new approach for detecting low-level mutations in next-generation sequence data Genome Biol., 13 (2012),p. R34
    [22]
    Lombes, A., Diaz, C., Romero, N.B. et al. Analysis of the tissue distribution and inheritance of heteroplasmic mitochondrial DNA point mutation by denaturing gradient gel electrophoresis in MERRF syndrome Neuromuscul. Disord., 2 (1992),pp. 323-330
    [23]
    McKenna, A., Hanna, M., Banks, E. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data Genome Res., 20 (2010),pp. 1297-1303
    [24]
    Ng, S.B., Buckingham, K.J., Lee, C. et al. Exome sequencing identifies the cause of a Mendelian disorder Nat. Genet., 42 (2010),pp. 30-35
    [25]
    Park, J.S., Sharma, L.K., Li, H. et al. Hum. Mol. Genet., 18 (2009),pp. 1578-1589
    [26]
    Payne, B.A., Wilson, I.J., Yu-Wai-Man, P. et al. Universal heteroplasmy of human mitochondrial DNA Hum. Mol. Genet., 22 (2013),pp. 384-390
    [27]
    Pereira, L., Freitas, F., Fernandes, V. et al. The diversity present in 5140 human mitochondrial genomes Am. J. Hum. Genet., 84 (2009),pp. 628-640
    [28]
    Robin, E.D., Wong, R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells J. Cell. Physiol., 136 (1988),pp. 507-513
    [29]
    Simon, D.K., Friedman, J., Breakefield, X.O. et al. A heteroplasmic mitochondrial complex I gene mutation in adult-onset dystonia Neurogenetics, 4 (2003),pp. 199-205
    [30]
    Smigrodzki, R.M., Khan, S.M. Mitochondrial microheteroplasmy and a theory of aging and age-related disease Rejuvenation Res., 8 (2005),pp. 172-198
    [31]
    Sondheimer, N., Glatz, C.E., Tirone, J.E. et al. Neutral mitochondrial heteroplasmy and the influence of aging Hum. Mol. Genet., 20 (2011),pp. 1653-1659
    [32]
    Stoneking, M. Hypervariable sites in the mtDNA control region are mutational hotspots Am. J. Hum. Genet., 67 (2000),pp. 1029-1032
    [33]
    Tang, S., Huang, T. Characterization of mitochondrial DNA heteroplasmy using a parallel sequencing system Biotechniques, 48 (2010),pp. 287-296
    [34]
    Tawn, E.J., Rees, G.S., Leith, C. et al. Germline minisatellite mutations in survivors of childhood and young adult cancer treated with radiation Int. J. Radiat. Biol., 87 (2011),pp. 330-340
    [35]
    Tawn, E.J., Whitehouse, C.A., Winther, J.F. et al. Chromosome analysis in childhood cancer survivors and their offspring – no evidence for radiotherapy-induced persistent genomic instability Mutat. Res., 583 (2005),pp. 198-206
    [36]
    van Oven, M., Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation Hum. Mutat., 30 (2009),pp. E386-E394
    [37]
    Wai, T., Teoli, D., Shoubridge, E.A. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes Nat. Genet., 40 (2008),pp. 1484-1488
    [38]
    Wong, L.J., Wong, H., Liu, A. Intergenerational transmission of pathogenic heteroplasmic mitochondrial DNA Genet. Med., 4 (2002),pp. 78-83
    [39]
    Wonnapinij, P., Chinnery, P.F., Samuels, D.C. The distribution of mitochondrial DNA heteroplasmy due to random genetic drift Am. J. Hum. Genet., 83 (2008),pp. 582-593
    [40]
    Wonnapinij, P., Chinnery, P.F., Samuels, D.C. Previous estimates of mitochondrial DNA mutation level variance did not account for sampling error: comparing the mtDNA genetic bottleneck in mice and humans Am. J. Hum. Genet., 86 (2010),pp. 540-550
    [41]
    Yao, Y.G., Kajigaya, S., Feng, X. et al. Accumulation of mtDNA variations in human single CD34+ cells from maternally related individuals: effects of aging and family genetic background Stem Cell Res., 10 (2013),pp. 361-370
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (113) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return