5.9
CiteScore
5.9
Impact Factor
Volume 41 Issue 1
Jan.  2014
Turn off MathJax
Article Contents

Methylation Modifications in Eukaryotic Messenger RNA

doi: 10.1016/j.jgg.2013.10.002
More Information
  • Corresponding author: E-mail address: guifangjia@pku.edu.cn (Guifang Jia)
  • Received Date: 2013-07-25
  • Accepted Date: 2013-10-20
  • Rev Recd Date: 2013-10-09
  • Available Online: 2013-11-09
  • Publish Date: 2014-01-20
  • RNA methylation modifications have been found for decades of years, which occur at different RNA types of numerous species, and their distribution is species-specific. However, people rarely know their biological functions. There are several identified methylation modifications in eukaryotic messenger RNA (mRNA), such as N7-methylguanosine (m7G) at the cap, N6-methyl-2′-O-methyladenosine (m6Am), 2′-O-methylation (Nm) within the cap and the internal positions, and internal N6-methyladenosine (m6A) and 5-methylcytosine (m5C). Among them, m7G cap was studied more clearly and found to have vital roles in several important mRNA processes like mRNA translation, stability and nuclear export. m6A as the most abundant modification in mRNA was found in the 1970s and has been proposed to function in mRNA splicing, translation, stability, transport and so on. m6A has been discovered as the first RNA reversible modification which is demethylated directly by human fat mass and obesity associated protein (FTO) and its homolog protein, alkylation repair homolog 5 (ALKBH5). FTO has a special demethylation mechanism that demethylases m6A to A through two over-oxidative intermediate states: N6-hydroxymethyladenosine (hm6A) and N6-formyladenosine (f6A). The two newly discovered m6A demethylases, FTO and ALKBH5, significantly control energy homeostasis and spermatogenesis, respectively, indicating that the dynamic and reversible m6A, analogous to DNA and histone modifications, plays broad roles in biological kingdoms and brings us an emerging field “RNA Epigenetics”. 5-methylcytosine (5mC) as an epigenetic mark in DNA has been studied widely, but m5C in mRNA is seldom explored. The bisulfide sequencing showed m5C is another abundant modification in mRNA, suggesting that it might be another RNA epigenetic mark. This review focuses on the main methylation modifications in mRNA to describe their formation, distribution, function and demethylation from the current knowledge and to provide future perspectives on functional studies.
  • loading
  • [1]
    Adams, J.M., Cory, S. Modified nucleosides and bizarre 5′-termini in mouse myeloma messenger-RNA Nature, 255 (1975),pp. 28-33
    [2]
    Agarwala, S.D., Blitzblau, H.G., Hochwagen, A. et al. RNA methylation by the MIS complex regulates a cell fate decision in yeast PLoS Genet., 8 (2012),p. e1002732
    [3]
    Agris, P.F. Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications EMBO Rep., 9 (2008),pp. 629-635
    [4]
    Alexandrov, A., Chernyakov, I., Gu, W.F. et al. Rapid tRNA decay can result from lack of nonessential modifications Mol. Cell, 21 (2006),pp. 87-96
    [5]
    Amort, T., Soulière, M.F., Wille, A. et al. Long non-coding RNAs as targets for cytosine methylation RNA Biol., 10 (2013),pp. 1003-1009
    [6]
    Ballestar, E., Wolffe, A.P. Methyl-CpG-binding proteins-targeting specific gene repression Eur. J. Biochem., 268 (2001),pp. 1-6
    [7]
    Basti, M.M., Stuart, J.W., Lam, A.T. et al. Nat. Struct. Biol., 3 (1996),pp. 38-44
    [8]
    Bentley, D.L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors Curr. Opin. Cell Biol., 17 (2005),pp. 251-256
    [9]
    Blanco, S., Kurowski, A., Nichols, J. et al. The RNA–methyltransferase Misu (NSun2) poises epidermal stem cells to differentiate PLoS Genet., 7 (2011),p. e1002403
    [10]
    Bodi, Z., Button, J.D., Grierson, D. et al. Yeast targets for mRNA methylation Nucleic Acids Res., 38 (2010),pp. 5327-5335
    [11]
    Bodi, Z., Zhong, S., Mehra, S. et al. Front. Plant Sci., 48 (2012),pp. 1-9
    [12]
    Bokar, J.
    [13]
    Bokar, J.A., Rathshambaugh, M.E., Ludwiczak, R. et al. J. Biol. Chem., 269 (1994),pp. 17697-17704
    [14]
    Bokar, J.A., Shambaugh, M.E., Polayes, D. et al. RNA, 3 (1997),pp. 1233-1247
    [15]
    Brzezicha, B., Schmidt, M., Makalowska, I. et al. Nucleic Acids Res., 34 (2006),pp. 6034-6043
    [16]
    Bujnicki, J.M., Feder, M., Ayres, C.L. et al. Nucleic Acids Res., 32 (2004),pp. 2453-2463
    [17]
    Cantara, W.A., Crain, P.F., Rozenski, J. et al. The RNA modification database, RNAMDB: 2011 update Nucleic Acids Res., 39 (2011),pp. D195-D201
    [18]
    Chen, B., Ye, F., Yu, L. et al. J. Am. Chem. Soc., 134 (2012),pp. 17963-17971
    [19]
    Chernyakov, I., Whipple, J.M., Kotelawala, L. et al. Genes Dev., 22 (2008),pp. 1369-1380
    [20]
    Chow, C.S., Lamichhane, T.N., Mahto, S.K. Expanding the nucleotide repertoire of the ribosome with post-transcriptional modifications ACS Chem. Biol., 2 (2007),pp. 610-619
    [21]
    Chu, C., Shatkin, A.J. Apoptosis and autophagy induction in mammalian cells by small interfering RNA knockdown of mRNA capping enzymes Mol. Cell. Biol., 28 (2008),pp. 5829-5836
    [22]
    Clancy, M.J., Shambaugh, M.E., Timpte, C.S. et al. Nucleic Acids Res., 30 (2002),pp. 4509-4518
    [23]
    Cowling, V.H. Regulation of mRNA cap methylation Biochem. J., 425 (2010),pp. 295-302
    [24]
    Dargemont, C., Kühn, L.C. J. Cell Biol., 118 (1992),pp. 1-9
    [25]
    Desrosiers, R., Friderici, K., Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells Proc. Natl. Acad. Sci. USA, 71 (1974),pp. 3971-3975
    [26]
    Daffis, S., Szretter, K.J., Schriewer, J. et al. Nature, 468 (2010),pp. 452-456
    [27]
    Dina, C., Meyre, D., Gallina, S. et al. Variation in FTO contributes to childhood obesity and severe adult obesity Nat. Genet., 39 (2007),pp. 724-726
    [28]
    Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S. et al. Nature, 485 (2012),pp. 201-284
    [29]
    Dubin, D.T., Stollar, V. Methylation of sindbis virus 26S messenger-RNA Biochem. Biophys. Res. Commun., 66 (1975),pp. 1373-1379
    [30]
    Dubin, D.T., Taylor, R.H. Methylation state of poly A-containing messenger RNA from cultured hamster cells Nucleic Acids Res., 2 (1975),pp. 1653-1668
    [31]
    Eckhardt, F., Lewin, J., Cortese, R. et al. DNA methylation profiling of human chromosomes 6, 20 and 22 Nat. Genet., 38 (2006),pp. 1378-1385
    [32]
    Edelheit, S., Schwartz, S., Mumbach, M.R. et al. PLoS Genet. (2013),p. e1003602
    [33]
    Fischer, U., Luhrmann, R. Science, 249 (1990),pp. 786-790
    [34]
    Franks, T.M., Lykke-Andersen, J. The control of mRNA decapping and P-body formation Mol. Cell, 32 (2008),pp. 605-615
    [35]
    Frayling, T.M., Timpson, N.J., Weedon, M.N. et al. Science, 316 (2007),pp. 889-894
    [36]
    Fresco, L.D., Buratowski, S. Conditional mutants of the yeast mRNA capping enzyme show that the cap enhances, but is not required for, mRNA splicing RNA, 2 (1996),pp. 584-596
    [37]
    Frye, M., Watt, F.M. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors Curr. Biol., 16 (2006),pp. 971-981
    [38]
    Fu, Y., Jia, G., Pang, X. et al. Nat. Commun., 4 (2013),p. 1798
    [39]
    Furuichi, Y., Morgan, M., Shatkin, A.J. et al. Methylated, blocked 5′ termini in Hela-cell messenger-RNA Proc. Natl. Acad. Sci. USA, 72 (1975),pp. 1904-1908
    [40]
    Furuichi, Y., Shatkin, A.J. Viral and cellular mRNA capping: past and prospects Adv. Virus Res., 55 (2000),pp. 135-184
    [41]
    Gerken, T., Girard, C.A., Tung, Y.-C.L. et al. Science, 318 (2007),pp. 1469-1472
    [42]
    Gingras, A.C., Raught, B., Sonenberg, N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation Annu. Rev. Biochem., 68 (1999),pp. 913-963
    [43]
    Glover-Cutter, K., Kim, S., Espinosa, J. et al. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes Nat. Struct. Mol. Biol., 15 (2008),pp. 71-78
    [44]
    Goll, M.G., Kirpekar, F., Maggert, K.A. et al. Science, 311 (2006),pp. 395-398
    [45]
    Gu, W.F., Hurto, R.L., Hopper, A.K. et al. Mol. Cell. Biol., 25 (2005),pp. 8191-8201
    [46]
    Gustafson, W.C., Taylor, C.W., Valdez, B.C. et al. Nucleolar protein p120 contains an arginine-rich domain that binds to ribosomal RNA Biochem. J., 331 (1998),pp. 387-393
    [47]
    Haugland, R.A., Cline, M.G. Post-transcriptional modifications of oat coleoptile ribonucleic-acids-5′-terminal capping and methylation of internal nucleosides in poly(a)-rich RNA Eur. J. Biochem., 104 (1980),pp. 271-277
    [48]
    He, C. RNA epigenetics? Nat. Chem. Biol., 6 (2010),pp. 863-865
    [49]
    Hong, B., Brockenbrough, J.S., Wu, P. et al. Nop2p is required for pre-rRNA processing and 60S ribosome subunit synthesis in yeast Mol. Cell. Biol., 17 (1997),pp. 378-388
    [50]
    Hussain, S., Tuorto, F., Menon, S. et al. The mouse cytosine-5 RNA methyltransferase NSun2 is a component of the chromatoid body and required for testis differentiation Mol. Cell. Biol., 33 (2013),pp. 1561-1570
    [51]
    Hussain, S., Sajini, A.A., Blanco, S. et al. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs Cell Rep., 4 (2013),pp. 255-261
    [52]
    Izaurralde, E., Lewis, J., Gamberi, C. et al. A cap-binding protein complex mediating U snRNA export Nature, 376 (1995),pp. 709-712
    [53]
    Jia, G., Fu, Y., Zhao, X. et al. Nat. Chem. Biol., 7 (2011),pp. 885-887
    [54]
    Jia, G., Yang, C.-G., Yang, S. et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO FEBS Lett., 582 (2008),pp. 3313-3319
    [55]
    Jia, G.F., Fu, Y., He, C. Reversible RNA adenosine methylation in biological regulation Trends Genet., 29 (2013),pp. 108-115
    [56]
    Kaklamani, V., Yi, N., Sadim, M. et al. BMC. Med. Genet., 12 (2011),p. 52
    [57]
    Keller, L., Xu, W., Wang, H.-X. et al. J. Alzheimers Dis., 23 (2011),pp. 461-469
    [58]
    Kellner, S., Burhenne, J., Helm, M. Detection of RNA modifications RNA Biol., 7 (2010),pp. 237-247
    [59]
    Kennedy, T.D., Lane, B.G. Wheat embryo ribonucleates. XIII. Methyl-substituted nucleoside constituents and 5′-terminal dinucleotide sequences in bulk poly(A)-rich RNA from imbibing wheat embryos Can. J. Biochem., 57 (1979),pp. 927-931
    [60]
    Khoddami, V., Cairns, B.R. Identification of direct targets and modified bases of RNA cytosine methyltransferases Nat. Biotechnol., 31 (2013),pp. 458-464
    [61]
    Kiani, J., Grandjean, V., Liebers, R. et al. RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2 PLoS Genet., 9 (2013),p. e1003498
    [62]
    Kierzek, E., Kierzek, R. Nucleic Acids Res., 31 (2003),pp. 4472-4480
    [63]
    King, M.Y., Redman, K.L. RNA methyltransferases utilize two cysteine residues in the formation of 5-methylcytosine Biochemistry, 41 (2002),pp. 11218-11225
    [64]
    Kiriakidou, M., Tan, G.S., Lamprinaki, S. et al. Cell, 129 (2007),pp. 1141-1151
    [65]
    Krug, R.M., Morgan, M.A., Shatkin, A.J. J. Virol., 20 (1976),pp. 45-53
    [66]
    Lappalainen, T., Kolehmainen, M., Schwab, U.S. et al. Nutr. Metab. Cardiovasc. Dis., 21 (2011),pp. 691-698
    [67]
    Levis, R., Penman, S. J. Mol. Biol., 120 (1978),pp. 487-515
    [68]
    Liu, H., Kiledjian, M. Decapping the message: a beginning or an end Biochem. Soc. Trans., 34 (2006),pp. 35-38
    [69]
    Mao, X.D., Schwer, B., Shuman, S. Yeast messenger-RNA cap methyltransferase is a 50-kilodalton protein encoded by an essential gene Mol. Cell. Biol., 15 (1995),pp. 4167-4174
    [70]
    Mao, X.D., Schwer, B., Shuman, S. Mol. Cell. Biol., 16 (1996),pp. 475-480
    [71]
    Meyer, K.D., Saletore, Y., Zumbo, P. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons Cell, 149 (2012),pp. 1635-1646
    [72]
    Motorin, Y., Grosjean, H. RNA, 5 (1999),pp. 1105-1118
    [73]
    Motorin, Y., Helm, M. RNA nucleotide methylation Wiley Interdiscip. Rev. RNA, 2 (2011),pp. 611-631
    [74]
    Mouaikel, J., Verheggen, C., Bertrand, E. et al. Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus Mol. Cell, 9 (2002),pp. 891-901
    [75]
    Murthy, K.G.K., Park, P., Manley, J.L. A nuclear micrococcal-sensitive, atp-dependent exoribonuclease degrades uncapped but not capped RNA substrates Nucleic Acids Res., 19 (1991),pp. 2685-2692
    [76]
    Muthukrishnan, S., Both, G.W., Furuichi, Y. et al. 5′-terminal 7-methylguanosine in eukaryotic messenger-RNA is required for translation Nature, 255 (1975),pp. 33-37
    [77]
    Nichols, J.L. Cap structures in maize poly(A)-containing RNA Biochim. Biophys. Acta, 563 (1979),pp. 490-495
    [78]
    Niu, Y., Zhao, X., Wu, Y.S. et al. Genomics Proteomics Bioinforma., 11 (2013),pp. 8-17
    [79]
    Pan, T. Trends Biochem. Sci., 38 (2013),pp. 204-209
    [80]
    Perry, R.P., Kelley, D.E., Friderici, K. et al. Methylated constituents of L cell messengerRNA: evidence for an unusual cluster at the 5′ terminus Cell, 4 (1975),pp. 387-394
    [81]
    Phalke, S., Nickel, O., Walluscheck, D. et al. Nat. Genet., 41 (2009),pp. 696-702
    [82]
    Pillai, R.S., Bhattacharyya, S.N., Artus, C.G. et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells Science, 309 (2005),pp. 1573-1576
    [83]
    Pillutla, R.C., Shimamoto, A., Furuichi, Y. et al. Human mRNA capping enzyme (RNGTT) and cap methyltransferase (RNMT) map to 6q16 and 18p11.22p11.23, respectively Genomics, 54 (1998),pp. 351-353
    [84]
    Rottman, F., Shatkin, A.J., Perry, R.P. Sequences containing methylated nucleotides at 5′ termini of messenger RNAs: possible implications for processing Cell, 3 (1974),pp. 197-199
    [85]
    Saha, N., Schwer, B., Shuman, S. J. Biol. Chem., 274 (1999),pp. 16553-16562
    [86]
    Saldittgeorgieff, M., Jelinek, W., Darnell, J.E. et al. Methyl labeling of HeLa cell hnRNA: a comparison with mRNA Cell, 7 (1976),pp. 227-237
    [87]
    Scavetta, R., Thomas, C.B., Walsh, M.A. et al. Nucleic Acids Res., 28 (2000),pp. 3950-3961
    [88]
    Schaefer, M., Lyko, F. Solving the Dnmt2 enigma Chromosoma, 119 (2010),pp. 35-40
    [89]
    Schibler, U., Kelley, D.E., Perry, R.P. Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L-cells J. Mol. Biol., 115 (1977),pp. 695-714
    [90]
    Scott, L.J., Mohlke, K.L., Bonnycastle, L.L. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants Science, 316 (2007),pp. 1341-1345
    [91]
    Shafer, B., Chu, C., Shatkin, A.J. Human mRNA cap methyltransferase: alternative nuclear localization signal motifs ensure nuclear localization required for viability Mol. Cell. Biol., 25 (2005),pp. 2644-2649
    [92]
    Sharp, P.A. The centrality of RNA Cell, 136 (2009),pp. 577-580
    [93]
    Shatkin, A.J. Capping of eukaryotic messenger RNAs Cell, 9 (1976),pp. 645-653
    [94]
    Shuman, S. What messenger RNA capping tells us about eukaryotic evolution Nat. Rev. Mol. Cell Biol., 3 (2002),pp. 619-625
    [95]
    Sommer, S., Saldittgeorgieff, M., Bachenheimer, S. et al. Methylation of adenovirus-specific nuclear and cytoplasmic RNA Nucleic Acids Res., 3 (1976),pp. 749-765
    [96]
    Spriggs, K.A., Stoneley, M., Bushell, M. et al. Re-programming of translation following cell stress allows IRES-mediated translation to predominate Biol. Cell, 100 (2008),pp. 27-38
    [97]
    Squires, J.E., Patel, H.R., Nousch, M. et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA Nucleic Acids Res., 40 (2012),pp. 5023-5033
    [98]
    Tsukamoto, T., Shibagaki, Y., Niikura, Y. et al. Cloning and characterization of three human cDNAs encoding mRNA (guanine-7-)-methyltransferase, an mRNA cap methylase Biochem. Biophys. Res. Commun., 251 (1998),pp. 27-34
    [99]
    Venmurthy, M.R. Blocked and methylated 5′-terminal cap structures of rat-brain messenger ribonucleic-acids J. Neurochem., 38 (1982),pp. 28-40
    [100]
    Walbott, H., Husson, C., Auxilien, S. et al. RNA, 13 (2007),pp. 967-973
    [101]
    Wang, S.P., Shuman, S. J. Biol. Chem., 272 (1997),pp. 14683-14689
    [102]
    Wei, C.M., Gershowitz, A., Moss, B. Methylated nucleotides block 5′ terminus of Hela-cell messenger-RNA Cell, 4 (1975),pp. 379-386
    [103]
    Wei, C.M., Gershowitz, A., Moss, B. 5′-terminal and internal methylated nucleotide sequences in Hela cell messenger RNA Biochemistry, 15 (1976),pp. 397-401
    [104]
    Wilkinson, C.R.M., Bartlett, R., Nurse, P. et al. The fission yeast gene PMT1(+) encodes a DNA methyltransferase homolog Nucleic Acids Res., 23 (1995),pp. 203-210
    [105]
    Yi, C., Pan, T. Cellular dynamics of RNA modification Acc. Chem. Res., 44 (2011),pp. 1380-1388
    [106]
    Zhao, X.L., Yu, Y.T. Detection and quantitation of RNA base modifications RNA, 10 (2004),pp. 996-1002
    [107]
    Zheng, G.Q., Dahl, J.A., Niu, Y.M. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility Mol. Cell, 49 (2013),pp. 18-29
    [108]
    Zhong, S., Li, H., Bodi, Z. et al. Plant Cell, 20 (2008),pp. 1278-1288
    [109]
    Züst, R., Cervantes-Barragan, L., Habjan, M. et al. Nat. Immunol., 12 (2011),pp. 137-146
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (94) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return