 
	                | [1] | Adams, J.M., Cory, S. Modified nucleosides and bizarre 5′-termini in mouse myeloma messenger-RNA Nature, 255 (1975),pp. 28-33 | 
| [2] | Agarwala, S.D., Blitzblau, H.G., Hochwagen, A. et al. RNA methylation by the MIS complex regulates a cell fate decision in yeast PLoS Genet., 8 (2012),p. e1002732 | 
| [3] | Agris, P.F. Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications EMBO Rep., 9 (2008),pp. 629-635 | 
| [4] | Alexandrov, A., Chernyakov, I., Gu, W.F. et al. Rapid tRNA decay can result from lack of nonessential modifications Mol. Cell, 21 (2006),pp. 87-96 | 
| [5] | Amort, T., Soulière, M.F., Wille, A. et al. Long non-coding RNAs as targets for cytosine methylation RNA Biol., 10 (2013),pp. 1003-1009 | 
| [6] | Ballestar, E., Wolffe, A.P. Methyl-CpG-binding proteins-targeting specific gene repression Eur. J. Biochem., 268 (2001),pp. 1-6 | 
| [7] | Basti, M.M., Stuart, J.W., Lam, A.T. et al. Nat. Struct. Biol., 3 (1996),pp. 38-44 | 
| [8] | Bentley, D.L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors Curr. Opin. Cell Biol., 17 (2005),pp. 251-256 | 
| [9] | Blanco, S., Kurowski, A., Nichols, J. et al. The RNA–methyltransferase Misu (NSun2) poises epidermal stem cells to differentiate PLoS Genet., 7 (2011),p. e1002403 | 
| [10] | Bodi, Z., Button, J.D., Grierson, D. et al. Yeast targets for mRNA methylation Nucleic Acids Res., 38 (2010),pp. 5327-5335 | 
| [11] | Bodi, Z., Zhong, S., Mehra, S. et al. Front. Plant Sci., 48 (2012),pp. 1-9 | 
| [12] | Bokar, J. | 
| [13] | Bokar, J.A., Rathshambaugh, M.E., Ludwiczak, R. et al. J. Biol. Chem., 269 (1994),pp. 17697-17704 | 
| [14] | Bokar, J.A., Shambaugh, M.E., Polayes, D. et al. RNA, 3 (1997),pp. 1233-1247 | 
| [15] | Brzezicha, B., Schmidt, M., Makalowska, I. et al. Nucleic Acids Res., 34 (2006),pp. 6034-6043 | 
| [16] | Bujnicki, J.M., Feder, M., Ayres, C.L. et al. Nucleic Acids Res., 32 (2004),pp. 2453-2463 | 
| [17] | Cantara, W.A., Crain, P.F., Rozenski, J. et al. The RNA modification database, RNAMDB: 2011 update Nucleic Acids Res., 39 (2011),pp. D195-D201 | 
| [18] | Chen, B., Ye, F., Yu, L. et al. J. Am. Chem. Soc., 134 (2012),pp. 17963-17971 | 
| [19] | Chernyakov, I., Whipple, J.M., Kotelawala, L. et al. Genes Dev., 22 (2008),pp. 1369-1380 | 
| [20] | Chow, C.S., Lamichhane, T.N., Mahto, S.K. Expanding the nucleotide repertoire of the ribosome with post-transcriptional modifications ACS Chem. Biol., 2 (2007),pp. 610-619 | 
| [21] | Chu, C., Shatkin, A.J. Apoptosis and autophagy induction in mammalian cells by small interfering RNA knockdown of mRNA capping enzymes Mol. Cell. Biol., 28 (2008),pp. 5829-5836 | 
| [22] | Clancy, M.J., Shambaugh, M.E., Timpte, C.S. et al. Nucleic Acids Res., 30 (2002),pp. 4509-4518 | 
| [23] | Cowling, V.H. Regulation of mRNA cap methylation Biochem. J., 425 (2010),pp. 295-302 | 
| [24] | Dargemont, C., Kühn, L.C. J. Cell Biol., 118 (1992),pp. 1-9 | 
| [25] | Desrosiers, R., Friderici, K., Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells Proc. Natl. Acad. Sci. USA, 71 (1974),pp. 3971-3975 | 
| [26] | Daffis, S., Szretter, K.J., Schriewer, J. et al. Nature, 468 (2010),pp. 452-456 | 
| [27] | Dina, C., Meyre, D., Gallina, S. et al. Variation in FTO contributes to childhood obesity and severe adult obesity Nat. Genet., 39 (2007),pp. 724-726 | 
| [28] | Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S. et al. Nature, 485 (2012),pp. 201-284 | 
| [29] | Dubin, D.T., Stollar, V. Methylation of sindbis virus 26S messenger-RNA Biochem. Biophys. Res. Commun., 66 (1975),pp. 1373-1379 | 
| [30] | Dubin, D.T., Taylor, R.H. Methylation state of poly A-containing messenger RNA from cultured hamster cells Nucleic Acids Res., 2 (1975),pp. 1653-1668 | 
| [31] | Eckhardt, F., Lewin, J., Cortese, R. et al. DNA methylation profiling of human chromosomes 6, 20 and 22 Nat. Genet., 38 (2006),pp. 1378-1385 | 
| [32] | Edelheit, S., Schwartz, S., Mumbach, M.R. et al. PLoS Genet. (2013),p. e1003602 | 
| [33] | Fischer, U., Luhrmann, R. Science, 249 (1990),pp. 786-790 | 
| [34] | Franks, T.M., Lykke-Andersen, J. The control of mRNA decapping and P-body formation Mol. Cell, 32 (2008),pp. 605-615 | 
| [35] | Frayling, T.M., Timpson, N.J., Weedon, M.N. et al. Science, 316 (2007),pp. 889-894 | 
| [36] | Fresco, L.D., Buratowski, S. Conditional mutants of the yeast mRNA capping enzyme show that the cap enhances, but is not required for, mRNA splicing RNA, 2 (1996),pp. 584-596 | 
| [37] | Frye, M., Watt, F.M. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors Curr. Biol., 16 (2006),pp. 971-981 | 
| [38] | Fu, Y., Jia, G., Pang, X. et al. Nat. Commun., 4 (2013),p. 1798 | 
| [39] | Furuichi, Y., Morgan, M., Shatkin, A.J. et al. Methylated, blocked 5′ termini in Hela-cell messenger-RNA Proc. Natl. Acad. Sci. USA, 72 (1975),pp. 1904-1908 | 
| [40] | Furuichi, Y., Shatkin, A.J. Viral and cellular mRNA capping: past and prospects Adv. Virus Res., 55 (2000),pp. 135-184 | 
| [41] | Gerken, T., Girard, C.A., Tung, Y.-C.L. et al. Science, 318 (2007),pp. 1469-1472 | 
| [42] | Gingras, A.C., Raught, B., Sonenberg, N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation Annu. Rev. Biochem., 68 (1999),pp. 913-963 | 
| [43] | Glover-Cutter, K., Kim, S., Espinosa, J. et al. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes Nat. Struct. Mol. Biol., 15 (2008),pp. 71-78 | 
| [44] | Goll, M.G., Kirpekar, F., Maggert, K.A. et al. Science, 311 (2006),pp. 395-398 | 
| [45] | Gu, W.F., Hurto, R.L., Hopper, A.K. et al. Mol. Cell. Biol., 25 (2005),pp. 8191-8201 | 
| [46] | Gustafson, W.C., Taylor, C.W., Valdez, B.C. et al. Nucleolar protein p120 contains an arginine-rich domain that binds to ribosomal RNA Biochem. J., 331 (1998),pp. 387-393 | 
| [47] | Haugland, R.A., Cline, M.G. Post-transcriptional modifications of oat coleoptile ribonucleic-acids-5′-terminal capping and methylation of internal nucleosides in poly(a)-rich RNA Eur. J. Biochem., 104 (1980),pp. 271-277 | 
| [48] | He, C. RNA epigenetics? Nat. Chem. Biol., 6 (2010),pp. 863-865 | 
| [49] | Hong, B., Brockenbrough, J.S., Wu, P. et al. Nop2p is required for pre-rRNA processing and 60S ribosome subunit synthesis in yeast Mol. Cell. Biol., 17 (1997),pp. 378-388 | 
| [50] | Hussain, S., Tuorto, F., Menon, S. et al. The mouse cytosine-5 RNA methyltransferase NSun2 is a component of the chromatoid body and required for testis differentiation Mol. Cell. Biol., 33 (2013),pp. 1561-1570 | 
| [51] | Hussain, S., Sajini, A.A., Blanco, S. et al. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs Cell Rep., 4 (2013),pp. 255-261 | 
| [52] | Izaurralde, E., Lewis, J., Gamberi, C. et al. A cap-binding protein complex mediating U snRNA export Nature, 376 (1995),pp. 709-712 | 
| [53] | Jia, G., Fu, Y., Zhao, X. et al. Nat. Chem. Biol., 7 (2011),pp. 885-887 | 
| [54] | Jia, G., Yang, C.-G., Yang, S. et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO FEBS Lett., 582 (2008),pp. 3313-3319 | 
| [55] | Jia, G.F., Fu, Y., He, C. Reversible RNA adenosine methylation in biological regulation Trends Genet., 29 (2013),pp. 108-115 | 
| [56] | Kaklamani, V., Yi, N., Sadim, M. et al. BMC. Med. Genet., 12 (2011),p. 52 | 
| [57] | Keller, L., Xu, W., Wang, H.-X. et al. J. Alzheimers Dis., 23 (2011),pp. 461-469 | 
| [58] | Kellner, S., Burhenne, J., Helm, M. Detection of RNA modifications RNA Biol., 7 (2010),pp. 237-247 | 
| [59] | Kennedy, T.D., Lane, B.G. Wheat embryo ribonucleates. XIII. Methyl-substituted nucleoside constituents and 5′-terminal dinucleotide sequences in bulk poly(A)-rich RNA from imbibing wheat embryos Can. J. Biochem., 57 (1979),pp. 927-931 | 
| [60] | Khoddami, V., Cairns, B.R. Identification of direct targets and modified bases of RNA cytosine methyltransferases Nat. Biotechnol., 31 (2013),pp. 458-464 | 
| [61] | Kiani, J., Grandjean, V., Liebers, R. et al. RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2 PLoS Genet., 9 (2013),p. e1003498 | 
| [62] | Kierzek, E., Kierzek, R. Nucleic Acids Res., 31 (2003),pp. 4472-4480 | 
| [63] | King, M.Y., Redman, K.L. RNA methyltransferases utilize two cysteine residues in the formation of 5-methylcytosine Biochemistry, 41 (2002),pp. 11218-11225 | 
| [64] | Kiriakidou, M., Tan, G.S., Lamprinaki, S. et al. Cell, 129 (2007),pp. 1141-1151 | 
| [65] | Krug, R.M., Morgan, M.A., Shatkin, A.J. J. Virol., 20 (1976),pp. 45-53 | 
| [66] | Lappalainen, T., Kolehmainen, M., Schwab, U.S. et al. Nutr. Metab. Cardiovasc. Dis., 21 (2011),pp. 691-698 | 
| [67] | Levis, R., Penman, S. J. Mol. Biol., 120 (1978),pp. 487-515 | 
| [68] | Liu, H., Kiledjian, M. Decapping the message: a beginning or an end Biochem. Soc. Trans., 34 (2006),pp. 35-38 | 
| [69] | Mao, X.D., Schwer, B., Shuman, S. Yeast messenger-RNA cap methyltransferase is a 50-kilodalton protein encoded by an essential gene Mol. Cell. Biol., 15 (1995),pp. 4167-4174 | 
| [70] | Mao, X.D., Schwer, B., Shuman, S. Mol. Cell. Biol., 16 (1996),pp. 475-480 | 
| [71] | Meyer, K.D., Saletore, Y., Zumbo, P. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons Cell, 149 (2012),pp. 1635-1646 | 
| [72] | Motorin, Y., Grosjean, H. RNA, 5 (1999),pp. 1105-1118 | 
| [73] | Motorin, Y., Helm, M. RNA nucleotide methylation Wiley Interdiscip. Rev. RNA, 2 (2011),pp. 611-631 | 
| [74] | Mouaikel, J., Verheggen, C., Bertrand, E. et al. Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus Mol. Cell, 9 (2002),pp. 891-901 | 
| [75] | Murthy, K.G.K., Park, P., Manley, J.L. A nuclear micrococcal-sensitive, atp-dependent exoribonuclease degrades uncapped but not capped RNA substrates Nucleic Acids Res., 19 (1991),pp. 2685-2692 | 
| [76] | Muthukrishnan, S., Both, G.W., Furuichi, Y. et al. 5′-terminal 7-methylguanosine in eukaryotic messenger-RNA is required for translation Nature, 255 (1975),pp. 33-37 | 
| [77] | Nichols, J.L. Cap structures in maize poly(A)-containing RNA Biochim. Biophys. Acta, 563 (1979),pp. 490-495 | 
| [78] | Niu, Y., Zhao, X., Wu, Y.S. et al. Genomics Proteomics Bioinforma., 11 (2013),pp. 8-17 | 
| [79] | Pan, T. Trends Biochem. Sci., 38 (2013),pp. 204-209 | 
| [80] | Perry, R.P., Kelley, D.E., Friderici, K. et al. Methylated constituents of L cell messengerRNA: evidence for an unusual cluster at the 5′ terminus Cell, 4 (1975),pp. 387-394 | 
| [81] | Phalke, S., Nickel, O., Walluscheck, D. et al. Nat. Genet., 41 (2009),pp. 696-702 | 
| [82] | Pillai, R.S., Bhattacharyya, S.N., Artus, C.G. et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells Science, 309 (2005),pp. 1573-1576 | 
| [83] | Pillutla, R.C., Shimamoto, A., Furuichi, Y. et al. Human mRNA capping enzyme (RNGTT) and cap methyltransferase (RNMT) map to 6q16 and 18p11.22p11.23, respectively Genomics, 54 (1998),pp. 351-353 | 
| [84] | Rottman, F., Shatkin, A.J., Perry, R.P. Sequences containing methylated nucleotides at 5′ termini of messenger RNAs: possible implications for processing Cell, 3 (1974),pp. 197-199 | 
| [85] | Saha, N., Schwer, B., Shuman, S. J. Biol. Chem., 274 (1999),pp. 16553-16562 | 
| [86] | Saldittgeorgieff, M., Jelinek, W., Darnell, J.E. et al. Methyl labeling of HeLa cell hnRNA: a comparison with mRNA Cell, 7 (1976),pp. 227-237 | 
| [87] | Scavetta, R., Thomas, C.B., Walsh, M.A. et al. Nucleic Acids Res., 28 (2000),pp. 3950-3961 | 
| [88] | Schaefer, M., Lyko, F. Solving the Dnmt2 enigma Chromosoma, 119 (2010),pp. 35-40 | 
| [89] | Schibler, U., Kelley, D.E., Perry, R.P. Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L-cells J. Mol. Biol., 115 (1977),pp. 695-714 | 
| [90] | Scott, L.J., Mohlke, K.L., Bonnycastle, L.L. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants Science, 316 (2007),pp. 1341-1345 | 
| [91] | Shafer, B., Chu, C., Shatkin, A.J. Human mRNA cap methyltransferase: alternative nuclear localization signal motifs ensure nuclear localization required for viability Mol. Cell. Biol., 25 (2005),pp. 2644-2649 | 
| [92] | Sharp, P.A. The centrality of RNA Cell, 136 (2009),pp. 577-580 | 
| [93] | Shatkin, A.J. Capping of eukaryotic messenger RNAs Cell, 9 (1976),pp. 645-653 | 
| [94] | Shuman, S. What messenger RNA capping tells us about eukaryotic evolution Nat. Rev. Mol. Cell Biol., 3 (2002),pp. 619-625 | 
| [95] | Sommer, S., Saldittgeorgieff, M., Bachenheimer, S. et al. Methylation of adenovirus-specific nuclear and cytoplasmic RNA Nucleic Acids Res., 3 (1976),pp. 749-765 | 
| [96] | Spriggs, K.A., Stoneley, M., Bushell, M. et al. Re-programming of translation following cell stress allows IRES-mediated translation to predominate Biol. Cell, 100 (2008),pp. 27-38 | 
| [97] | Squires, J.E., Patel, H.R., Nousch, M. et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA Nucleic Acids Res., 40 (2012),pp. 5023-5033 | 
| [98] | Tsukamoto, T., Shibagaki, Y., Niikura, Y. et al. Cloning and characterization of three human cDNAs encoding mRNA (guanine-7-)-methyltransferase, an mRNA cap methylase Biochem. Biophys. Res. Commun., 251 (1998),pp. 27-34 | 
| [99] | Venmurthy, M.R. Blocked and methylated 5′-terminal cap structures of rat-brain messenger ribonucleic-acids J. Neurochem., 38 (1982),pp. 28-40 | 
| [100] | Walbott, H., Husson, C., Auxilien, S. et al. RNA, 13 (2007),pp. 967-973 | 
| [101] | Wang, S.P., Shuman, S. J. Biol. Chem., 272 (1997),pp. 14683-14689 | 
| [102] | Wei, C.M., Gershowitz, A., Moss, B. Methylated nucleotides block 5′ terminus of Hela-cell messenger-RNA Cell, 4 (1975),pp. 379-386 | 
| [103] | Wei, C.M., Gershowitz, A., Moss, B. 5′-terminal and internal methylated nucleotide sequences in Hela cell messenger RNA Biochemistry, 15 (1976),pp. 397-401 | 
| [104] | Wilkinson, C.R.M., Bartlett, R., Nurse, P. et al. The fission yeast gene PMT1(+) encodes a DNA methyltransferase homolog Nucleic Acids Res., 23 (1995),pp. 203-210 | 
| [105] | Yi, C., Pan, T. Cellular dynamics of RNA modification Acc. Chem. Res., 44 (2011),pp. 1380-1388 | 
| [106] | Zhao, X.L., Yu, Y.T. Detection and quantitation of RNA base modifications RNA, 10 (2004),pp. 996-1002 | 
| [107] | Zheng, G.Q., Dahl, J.A., Niu, Y.M. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility Mol. Cell, 49 (2013),pp. 18-29 | 
| [108] | Zhong, S., Li, H., Bodi, Z. et al. Plant Cell, 20 (2008),pp. 1278-1288 | 
| [109] | Züst, R., Cervantes-Barragan, L., Habjan, M. et al. Nat. Immunol., 12 (2011),pp. 137-146 | 
