[1] |
Adams, R.L., Burdon, R.H., Gibb, S. et al. Biochim. Biophys. Acta, 655 (1981),pp. 329-334
|
[2] |
Adams, R.L., McKay, E.L., Craig, L.M. et al. Mouse DNA methylase: methylation of native DNA Biochim. Biophys. Acta, 561 (1979),pp. 345-357
|
[3] |
Angst, J., Gamma, A., Rossler, W. et al. Childhood adversity and chronicity of mood disorders Eur. Arch. Psychiatry Clin. Neurosci., 261 (2011),pp. 21-27
|
[4] |
Bhattacharya, S.K., Ramchandani, S., Cervoni, N. et al. A mammalian protein with specific demethylase activity for mCpG DNA Nature, 397 (1999),pp. 579-583
|
[5] |
Borghol, N., Suderman, M., McArdle, W. et al. Associations with early-life socio-economic position in adult DNA methylation Int. J. Epidemiol., 41 (2012),pp. 62-74
|
[6] |
Caspi, A., Sugden, K., Moffitt, T.E. et al. Science, 301 (2003),pp. 386-389
|
[7] |
Cervoni, N., Szyf, M. Demethylase activity is directed by histone acetylation J. Biol. Chem., 276 (2001),pp. 40778-40787
|
[8] |
Chen, C.C., Wang, K.Y., Shen, C.K. DNA 5-methylcytosine demethylation activities of the mammalian DNA methyltransferases J. Biol. Chem., 288 (2013),pp. 9084-9091
|
[9] |
Comb, M., Goodman, H.M. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2 Nucleic Acids Res., 18 (1990),pp. 3975-3982
|
[10] |
Corcoran, C.A., Pierre, P.J., Haddad, T. et al. Long-term effects of differential early rearing in rhesus macaques: behavioral reactivity in adulthood Dev. Psychobiol., 54 (2012),pp. 546-555
|
[11] |
Crudo, A., Petropoulos, S., Moisiadis, V.G. et al. Prenatal synthetic glucocorticoid treatment changes DNA methylation states in male organ systems: multigenerational effects Endocrinology, 153 (2012),pp. 3269-3283
|
[12] |
Crudo, A., Suderman, M., Moisiadis, V.G. et al. Glucocorticoid programming of the fetal male hippocampal epigenome Endocrinology, 154 (2013),pp. 1168-1180
|
[13] |
Dolinoy, D.C., Huang, D., Jirtle, R.L. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 13056-13061
|
[14] |
Eden, S., Hashimshony, T., Keshet, I. et al. DNA methylation models histone acetylation Nature, 394 (1998),p. 842
|
[15] |
Francis, D., Diorio, J., Liu, D. et al. Nongenomic transmission across generations of maternal behavior and stress responses in the rat Science, 286 (1999),pp. 1155-1158
|
[16] |
Fuks, F., Hurd, P.J., Deplus, R. et al. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase Nucleic Acids Res., 31 (2003),pp. 2305-2312
|
[17] |
Garrett, A.M., Weiner, J.A. Control of CNS synapse development by {gamma}-protocadherin-mediated astrocyte-neuron contact J. Neurosci., 29 (2009),pp. 11723-11731
|
[18] |
Gruenbaum, Y., Cedar, H., Razin, A. Substrate and sequence specificity of a eukaryotic DNA methylase Nature, 295 (1982),pp. 620-622
|
[19] |
Hazel, N.A., Hammen, C., Brennan, P.A. et al. Early childhood adversity and adolescent depression: the mediating role of continued stress Psychol. Med., 38 (2008),pp. 581-589
|
[20] |
Hendrich, B., Guy, J., Ramsahoye, B. et al. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development Genes Dev., 15 (2001),pp. 710-723
|
[21] |
Hertzman, C., Power, C., Matthews, S. et al. Using an interactive framework of society and lifecourse to explain self-rated health in early adulthood Soc. Sci. Med., 53 (2001),pp. 1575-1585
|
[22] |
Hompes, T., Izzi, B., Gellens, E. et al. J. Psychiatr. Res., 47 (2013),pp. 880-891
|
[23] |
Jost, J.P. Nuclear extracts of chicken embryos promote an active demethylation of DNA by excision repair of 5-methyldeoxycytidine Proc. Natl. Acad. Sci. USA, 90 (1993),pp. 4684-4688
|
[24] |
Kangaspeska, S., Stride, B., Metivier, R. et al. Transient cyclical methylation of promoter DNA Nature, 452 (2008),pp. 112-115
|
[25] |
Klengel, T., Mehta, D., Anacker, C. et al. Nat. Neurosci., 16 (2013),pp. 33-41
|
[26] |
Kriaucionis, S., Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain Science, 324 (2009),pp. 929-930
|
[27] |
Liberman, S.A., Mashoodh, R., Thompson, R.C. et al. Concordance in hippocampal and fecal Nr3c1 methylation is moderated by maternal behavior in the mouse Ecol. Evol., 2 (2012),pp. 3123-3131
|
[28] |
Lister, R., Pelizzola, M., Dowen, R.H. et al. Human DNA methylomes at base resolution show widespread epigenomic differences Nature, 462 (2009),pp. 315-322
|
[29] |
Maughan, B., McCarthy, G. Childhood adversities and psychosocial disorders Br. Med. Bull., 53 (1997),pp. 156-169
|
[30] |
McGowan, P.O., Sasaki, A., D'Alessio, A.C. et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse Nat. Neurosci., 12 (2009),pp. 342-348
|
[31] |
McGowan, P.O., Sasaki, A., Huang, T.C. et al. Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain PLoS ONE, 3 (2008),p. e2085
|
[32] |
McGowan, P.O., Suderman, M., Sasaki, A. et al. Broad epigenetic signature of maternal care in the brain of adult rats PLoS ONE, 6 (2011),p. e14739
|
[33] |
McLaughlin, K.A., Kubzansky, L.D., Dunn, E.C. et al. Childhood social environment, emotional reactivity to stress, and mood and anxiety disorders across the life course Depress Anxiety, 27 (2010),pp. 1087-1094
|
[34] |
Meaney, M.J., Szyf, M. Maternal care as a model for experience-dependent chromatin plasticity? Trends Neurosci., 28 (2005),pp. 456-463
|
[35] |
Miller, G.E., Chen, E., Fok, A.K. et al. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 14716-14721
|
[36] |
Miller, K.E., Laszlo, K., Suomi, S.J. Am. J. Primatol., 70 (2008),pp. 119-126
|
[37] |
Murgatroyd, C., Patchev, A.V., Wu, Y. et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress Nat. Neurosci., 12 (2009),pp. 1559-1566
|
[38] |
Nan, X., Ng, H.H., Johnson, C.A. et al.
|
[39] |
Ng, H.H., Zhang, Y., Hendrich, B. et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex Nat. Genet., 23 (1999),pp. 58-61
|
[40] |
Oberlander, T.F., Weinberg, J., Papsdorf, M. et al. Epigenetics, 3 (2008),pp. 97-106
|
[41] |
Power, C., Hertzman, C., Matthews, S. et al. Social differences in health: life-cycle effects between ages 23 and 33 in the 1958 British birth cohort Am. J. Public Health, 87 (1997),pp. 1499-1503
|
[42] |
Power, C., Li, L., Hertzman, C. Associations of early growth and adult adiposity with patterns of salivary cortisol in adulthood J. Clin. Endocrinol. Metab., 91 (2006),pp. 4264-4270
|
[43] |
Provencal, N., Suderman, M.J., Guillemin, C. et al. The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells J. Neurosci., 32 (2012),pp. 15626-15642
|
[44] |
Raber, J., Sorg, O., Horn, T.F. et al. Inflammatory cytokines: putative regulators of neuronal and neuro-endocrine function Brain Res. Brain Res. Rev., 26 (1998),pp. 320-326
|
[45] |
Ramchandani, S., Bhattacharya, S.K., Cervoni, N. et al. DNA methylation is a reversible biological signal Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 6107-6112
|
[46] |
Razin, A., Riggs, A.D. DNA methylation and gene function Science, 210 (1980),pp. 604-610
|
[47] |
Razin, A., Szyf, M. DNA methylation patterns. Formation and function Biochim. Biophys. Acta, 782 (1984),pp. 331-342
|
[48] |
Razin, A., Szyf, M., Kafri, T. et al. Replacement of 5-methylcytosine by cytosine: a possible mechanism for transient DNA demethylation during differentiation Proc. Natl. Acad. Sci. USA, 83 (1986),pp. 2827-2831
|
[49] |
Ressler, K.J., Mercer, K.B., Bradley, B. et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor Nature, 470 (2011),pp. 492-497
|
[50] |
Roth, T.L., Lubin, F.D., Funk, A.J. et al. Biol. Psychiatry, 65 (2009),pp. 760-769
|
[51] |
Ruppenthal, G.C., Arling, G.L., Harlow, H.F. et al. A 10-year perspective of motherless-mother monkey behavior J. Abnorm. Psychol, 85 (1976),pp. 341-349
|
[52] |
Stein, D.J., Scott, K., Haro Abad, J.M. et al. Early childhood adversity and later hypertension: data from the World Mental Health Survey Ann. Clin. Psychiatry, 22 (2010),pp. 19-28
|
[53] |
Suderman, M., McGowan, P.O., Sasaki, A. et al. Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 17266-17272
|
[54] |
Suomi, S.J., Collins, M.L., Harlow, H.F. et al. Effects of maternal and peer separations on young monkeys J. Child. Psychol. Psychiatry, 17 (1976),pp. 101-112
|
[55] |
Szyf, M. The early-life social environment and DNA methylation Clin. Genet., 81 (2012),pp. 341-349
|
[56] |
Szyf, M. How do environments talk to genes? Nat. Neurosci., 16 (2013),pp. 2-4
|
[57] |
Thomassin, H., Flavin, M., Espinas, M.L. et al. Glucocorticoid-induced DNA demethylation and gene memory during development EMBO J., 20 (2001),pp. 1974-1983
|
[58] |
Tyrka, A.R., Price, L.H., Marsit, C. et al. Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: preliminary findings in healthy adults PLoS ONE, 7 (2012),p. e30148
|
[59] |
Uchida, S., Hara, K., Kobayashi, A. et al. Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents J. Neurosci., 30 (2010),pp. 15007-15018
|
[60] |
Wang, D., Szyf, M., Benkelfat, C. et al. PLoS ONE, 7 (2012),p. e39501
|
[61] |
Waterland, R.A., Jirtle, R.L. Transposable elements: targets for early nutritional effects on epigenetic gene regulation Mol. Cell. Biol., 23 (2003),pp. 5293-5300
|
[62] |
Weaver, I.C., Cervoni, N., Champagne, F.A. et al. Epigenetic programming by maternal behavior Nat. Neurosci., 7 (2004),pp. 847-854
|
[63] |
Weaver, I.C., Champagne, F.A., Brown, S.E. et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life J. Neurosci., 25 (2005),pp. 11045-11054
|
[64] |
Weaver, I.C., D'Alessio, A.C., Brown, S.E. et al. The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: altering epigenetic marks by immediate-early genes J. Neurosci., 27 (2007),pp. 1756-1768
|
[65] |
Yirmiya, R., Goshen, I. Immune modulation of learning, memory, neural plasticity and neurogenesis Brain Behav. Immun., 25 (2011),pp. 181-213
|
[66] |
Zalcman, S., Murray, L., Dyck, D.G. et al. Interleukin-2 and -6 induce behavioral-activating effects in mice Brain Res., 811 (1998),pp. 111-121
|
[67] |
Zhou, Z., Hong, E.J., Cohen, S. et al. Neuron, 52 (2006),pp. 255-269
|