[1] |
Alkhimova, A.G., Heslop-Harrison, J.S., Shchapova, A.I. et al. Rye chromosome variability in wheat-rye addition and substitution lines Chromosome Res., 7 (1999),pp. 205-212
|
[2] |
Appels, R., Gustafson, J.P., May, C.E. Structural variation in the heterochromatin of rye chromosomes in triticales Theor. Appl. Genet., 63 (1982),pp. 235-244
|
[3] |
Bühler, M., Gasser, S.M. Silent chromatin at the middle and ends: lessons from yeasts EMBO J., 28 (2009),pp. 2149-2161
|
[4] |
Dalal, Y., Furuyama, T., Vermaak, D. et al. Structure, dynamics, and evolution of centromeric nucleosomes Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 15974-15981
|
[5] |
Dong, Q.H., Han, F.P. Phosphorylation of histone H2A is associated with centromere function and maintenance in meiosis Plant J., 71 (2012),pp. 800-809
|
[6] |
Fajkus, J., Sýkorová, E., Leitch, A.R. Telomeres in evolution and evolution of telomeres Chromosome Res., 13 (2005),pp. 469-479
|
[7] |
Francki, M.G. Genome, 44 (2001),pp. 266-274
|
[8] |
Fu, S.L., Gao, Z., Birchler, J.A. et al. Dicentric chromosome formation and epigenetics of centromere formation in plants J. Genet. Genomics, 39 (2012),pp. 125-130
|
[9] |
Fu, S.L., Lv, Z.L., Gao, Z. et al. Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 6033-6036
|
[10] |
Gao, Z., Fu, S., Dong, Q. et al. Inactivation of a centromere during the formation of a translocation in maize Chromosome Res., 19 (2011),pp. 755-761
|
[11] |
Guerra, M., Cabral, G., Cuacos, M. et al. Neocentrics and holokinetics (holocentrics): chromosomes out of the centromeric rules Cytogenet. Genome Res., 129 (2010),pp. 82-96
|
[12] |
Gustafson, J.P., Lukaszewski, A.J., Bennett, M.D. Somatic deletion and redistribution of telomeric heterochromatin in the genus Secale and in Triticale Chromosoma, 88 (1983),pp. 293-298
|
[13] |
Hadlaczky, G.., Praznovszky, T., Cserpán, I. et al. Centromere formation in mouse cells cotransformed with human DNA and a dominant marker gene Proc. Natl. Acad. Sci. USA, 88 (1991),pp. 8106-8110
|
[14] |
Han, F.P., Lamb, J.C., Birchler, J.A. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 3238-3243
|
[15] |
Han, F.P., Gao, Z., Yu, W.C. et al. Minichromosome analysis of chromosome paring, disjunction, and sister chromatid cohesion in maize Plant Cell, 19 (2007),pp. 3853-3863
|
[16] |
Han, F.P., Gao, Z., Birchler, J.A. Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize Plant Cell, 21 (2009),pp. 1929-1939
|
[17] |
Heit, R., Underhill, D.A., Chan, G. et al. Epigenetic regulation of centromere formation and kinetochore function Biochem. Cell Biol., 84 (2006),pp. 605-618
|
[18] |
Heller, R., Brown, K.E., Burgtorf, C. et al. Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 7125-7130
|
[19] |
Henikoff, S., Ahmad, K., Malik, H.S. The centromere paradox: stable inheritance with rapidly evolving DNA Science, 293 (2001),pp. 1098-1102
|
[20] |
Hiatt, E.N., Kentner, E.K., Dawe, R.K. Independently regulated neocentromere activity of two classes of tandem repeat arrays Plant Cell, 14 (2002),pp. 407-420
|
[21] |
Houben, A., Schubert, I. DNA and proteins of plant centromeres Curr. Opin. Plant Biol., 6 (2003),pp. 554-560
|
[22] |
Jiang, B., Lou, Q.F., Wang, D. et al. Bot. Stud., 52 (2011),pp. 145-152
|
[23] |
Kato, A., Zheng, Y.Z., Auger, D.L. et al. Minichromosomes derived from the B chromosome of maize Cytogenet. Genome Res., 109 (2005),pp. 156-165
|
[24] |
Kynast, R.G., Friebe, B., Gill, B.S. Chromosome Res., 8 (2000),pp. 133-139
|
[25] |
Lapitan, N.L.V., Sears, R.G., Gill, B.S. Translocations and other karyotypic structural changes in wheat × rye hybrids regenerated from tissue culture Theor. Appl. Genet., 68 (1984),pp. 547-554
|
[26] |
Liu, Z., Yue, W., Li, D. et al. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres Chromosoma, 117 (2008),pp. 445-456
|
[27] |
Lukaszewski, A.J. Genetics, 140 (1995),pp. 1069-1085
|
[28] |
Lukaszewski, A.J., Gustafson, J.P. Translocations and modifications of chromosomes in triticale × wheat hybrids Theor. Appl. Genet., 64 (1983),pp. 239-248
|
[29] |
Ma, J.X., Wing, R.A., Bennetzen, J.L. et al. Plant centromere organization: a dynamic structure with conserved functions Trends Genet., 23 (2007),pp. 134-139
|
[30] |
Masonbrink, R.E., Fu, S.L., Han, F.P. et al. Heritable loss of replication control of a minichromosome derived from the B chromosome of maize Genetics, 193 (2013),pp. 77-84
|
[31] |
McClintock, B. Genetics, 26 (1941),pp. 234-282
|
[32] |
McClintock, B. Mechanisms that rapidly reorganize the genome Stadler. Genet. Symp., 10 (1978),pp. 25-48
|
[33] |
McIntyre, C.L., Pereira, S., Moran, L.B. et al. Genome, 33 (1990),pp. 635-640
|
[34] |
Metcalfe, C.J., Bulazel, K.V., Ferreri, G.C. et al. Genomic instability within centromeres of interspecific marsupial hybrids Genetics, 177 (2007),pp. 2507-2517
|
[35] |
Miller, J.T., Dong, F.G., Jackson, S.A. et al. Retrotransposon-related DNA sequences in the centromeres of grass chromosomes Genetics, 150 (1998),pp. 1615-1623
|
[36] |
Nagaki, K., Song, J., Stupar, R.M. et al. Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres Genetics, 163 (2003),pp. 759-770
|
[37] |
Nasuda, S., Hudakova, S., Schubert, I. et al. Stable barley chromosomes without centromeric repeats Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 9842-9847
|
[38] |
Neumann, P., Navrátilová, A., Schroeder-Reiter, E. et al. Stretching the rules: monocentric chromosomes with multiple centromere domains PLoS Genet., 8 (2012),p. e1002777
|
[39] |
Page, S.L., Shaffer, L.G. Chromosome stability is maintained by short intercentromeric distance in functionally dicentric human Robertsonian translocations Chromosome Res., 6 (1998),pp. 115-122
|
[40] |
Paweletz, N., Vig, B.K., Finze, E.M. Evolution of compound centromeres: a new phenomenon Cancer Genet. Cytogenet, 42 (1989),pp. 75-86
|
[41] |
Pearce, S.R., Pich, U., Harrison, G. et al. Chromosome Res., 4 (1996),pp. 357-364
|
[42] |
Rayburn, A.L., Gill, B.S. Molecular identification of the D-genome chromosomes of wheat J. Hered., 77 (1986),pp. 253-255
|
[43] |
Scheinker, V.S., Lozovskaya, E.R., Bishop, J.G. et al. Proc. Natl. Acad. Sci. USA, 87 (1990),pp. 9615-9619
|
[44] |
Schubert, I., Lysak, M.A. Interpretation of karyotype evolution should consider chromosome structural constraints Trends Genet., 27 (2011),pp. 207-216
|
[45] |
Sears, E.R. Genetics, 31 (1946),pp. 229-230
|
[46] |
Sears, E.R., Camara, A. A transmissible dicentric chromosome Genetics, 37 (1952),pp. 125-135
|
[47] |
Tittel-Elmer, M., Bucher, E., Broger, L. et al. Stress-induced activation of heterochromatic transcription PLoS Genet., 6 (2010),p. e1001175
|
[48] |
Vershinin, A.V., Schwarzacher, T., Heslop-Harrison, J.S. The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes Plant Cell, 7 (1995),pp. 1823-1833
|
[49] |
Wang, Y.B., Hu, H., Snape, J.W. Spontaneous wheat/rye translocations from female meiotic products of hybrids between octoploid triticale and wheat Euphytica, 81 (1995),pp. 265-270
|
[50] |
Yu, W.C., Han, F.P., Gao, Z. et al. Construction and behavior of engineered minichromosomes in maize Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 8924-8929
|
[51] |
Zhang, W., Friebe, B., Gill, B.S. et al. Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres Chromosoma, 119 (2010),pp. 553-563
|