5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 8
Aug.  2013
Turn off MathJax
Article Contents

Alteration of Terminal Heterochromatin and Chromosome Rearrangements in Derivatives of Wheat-Rye Hybrids

doi: 10.1016/j.jgg.2013.05.005
More Information
  • Corresponding author: E-mail address: fphan@genetics.ac.cn (Fangpu Han)
  • Received Date: 2013-03-14
  • Accepted Date: 2013-05-03
  • Rev Recd Date: 2013-04-28
  • Available Online: 2013-06-10
  • Publish Date: 2013-08-20
  • Wheat-rye addition and substitution lines and their self progenies revealed variations in telomeric heterochromatin and centromeres. Furthermore, a mitotically unstable dicentric chromosome and stable multicentric chromosomes were observed in the progeny of a Chinese Spring-Imperial rye 3R addition line. An unstable multicentric chromosome was found in the progeny of a 6R/6D substitution line. Drastic variation of terminal heterochromatin including movement and disappearance of terminal heterochromatin occurred in the progeny of wheat-rye addition line 3R, and the 5RS ditelosomic addition line. Highly stable minichromosomes were observed in the progeny of a monosomic 4R addition line, a ditelosomic 5RS addition line and a 6R/6D substitution line. Minichromosomes, with and without the FISH signals for telomeric DNA (TTTAGGG)n, derived from a monosomic 4R addition line are stable and transmissible to the next generation. The results indicated that centromeres and terminal heterochromatin can be profoundly altered in wheat-rye hybrid derivatives.
  • loading
  • [1]
    Alkhimova, A.G., Heslop-Harrison, J.S., Shchapova, A.I. et al. Rye chromosome variability in wheat-rye addition and substitution lines Chromosome Res., 7 (1999),pp. 205-212
    [2]
    Appels, R., Gustafson, J.P., May, C.E. Structural variation in the heterochromatin of rye chromosomes in triticales Theor. Appl. Genet., 63 (1982),pp. 235-244
    [3]
    Bühler, M., Gasser, S.M. Silent chromatin at the middle and ends: lessons from yeasts EMBO J., 28 (2009),pp. 2149-2161
    [4]
    Dalal, Y., Furuyama, T., Vermaak, D. et al. Structure, dynamics, and evolution of centromeric nucleosomes Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 15974-15981
    [5]
    Dong, Q.H., Han, F.P. Phosphorylation of histone H2A is associated with centromere function and maintenance in meiosis Plant J., 71 (2012),pp. 800-809
    [6]
    Fajkus, J., Sýkorová, E., Leitch, A.R. Telomeres in evolution and evolution of telomeres Chromosome Res., 13 (2005),pp. 469-479
    [7]
    Francki, M.G. Genome, 44 (2001),pp. 266-274
    [8]
    Fu, S.L., Gao, Z., Birchler, J.A. et al. Dicentric chromosome formation and epigenetics of centromere formation in plants J. Genet. Genomics, 39 (2012),pp. 125-130
    [9]
    Fu, S.L., Lv, Z.L., Gao, Z. et al. Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 6033-6036
    [10]
    Gao, Z., Fu, S., Dong, Q. et al. Inactivation of a centromere during the formation of a translocation in maize Chromosome Res., 19 (2011),pp. 755-761
    [11]
    Guerra, M., Cabral, G., Cuacos, M. et al. Neocentrics and holokinetics (holocentrics): chromosomes out of the centromeric rules Cytogenet. Genome Res., 129 (2010),pp. 82-96
    [12]
    Gustafson, J.P., Lukaszewski, A.J., Bennett, M.D. Somatic deletion and redistribution of telomeric heterochromatin in the genus Secale and in Triticale Chromosoma, 88 (1983),pp. 293-298
    [13]
    Hadlaczky, G.., Praznovszky, T., Cserpán, I. et al. Centromere formation in mouse cells cotransformed with human DNA and a dominant marker gene Proc. Natl. Acad. Sci. USA, 88 (1991),pp. 8106-8110
    [14]
    Han, F.P., Lamb, J.C., Birchler, J.A. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 3238-3243
    [15]
    Han, F.P., Gao, Z., Yu, W.C. et al. Minichromosome analysis of chromosome paring, disjunction, and sister chromatid cohesion in maize Plant Cell, 19 (2007),pp. 3853-3863
    [16]
    Han, F.P., Gao, Z., Birchler, J.A. Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize Plant Cell, 21 (2009),pp. 1929-1939
    [17]
    Heit, R., Underhill, D.A., Chan, G. et al. Epigenetic regulation of centromere formation and kinetochore function Biochem. Cell Biol., 84 (2006),pp. 605-618
    [18]
    Heller, R., Brown, K.E., Burgtorf, C. et al. Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 7125-7130
    [19]
    Henikoff, S., Ahmad, K., Malik, H.S. The centromere paradox: stable inheritance with rapidly evolving DNA Science, 293 (2001),pp. 1098-1102
    [20]
    Hiatt, E.N., Kentner, E.K., Dawe, R.K. Independently regulated neocentromere activity of two classes of tandem repeat arrays Plant Cell, 14 (2002),pp. 407-420
    [21]
    Houben, A., Schubert, I. DNA and proteins of plant centromeres Curr. Opin. Plant Biol., 6 (2003),pp. 554-560
    [22]
    Jiang, B., Lou, Q.F., Wang, D. et al. Bot. Stud., 52 (2011),pp. 145-152
    [23]
    Kato, A., Zheng, Y.Z., Auger, D.L. et al. Minichromosomes derived from the B chromosome of maize Cytogenet. Genome Res., 109 (2005),pp. 156-165
    [24]
    Kynast, R.G., Friebe, B., Gill, B.S. Chromosome Res., 8 (2000),pp. 133-139
    [25]
    Lapitan, N.L.V., Sears, R.G., Gill, B.S. Translocations and other karyotypic structural changes in wheat × rye hybrids regenerated from tissue culture Theor. Appl. Genet., 68 (1984),pp. 547-554
    [26]
    Liu, Z., Yue, W., Li, D. et al. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres Chromosoma, 117 (2008),pp. 445-456
    [27]
    Lukaszewski, A.J. Genetics, 140 (1995),pp. 1069-1085
    [28]
    Lukaszewski, A.J., Gustafson, J.P. Translocations and modifications of chromosomes in triticale × wheat hybrids Theor. Appl. Genet., 64 (1983),pp. 239-248
    [29]
    Ma, J.X., Wing, R.A., Bennetzen, J.L. et al. Plant centromere organization: a dynamic structure with conserved functions Trends Genet., 23 (2007),pp. 134-139
    [30]
    Masonbrink, R.E., Fu, S.L., Han, F.P. et al. Heritable loss of replication control of a minichromosome derived from the B chromosome of maize Genetics, 193 (2013),pp. 77-84
    [31]
    McClintock, B. Genetics, 26 (1941),pp. 234-282
    [32]
    McClintock, B. Mechanisms that rapidly reorganize the genome Stadler. Genet. Symp., 10 (1978),pp. 25-48
    [33]
    McIntyre, C.L., Pereira, S., Moran, L.B. et al. Genome, 33 (1990),pp. 635-640
    [34]
    Metcalfe, C.J., Bulazel, K.V., Ferreri, G.C. et al. Genomic instability within centromeres of interspecific marsupial hybrids Genetics, 177 (2007),pp. 2507-2517
    [35]
    Miller, J.T., Dong, F.G., Jackson, S.A. et al. Retrotransposon-related DNA sequences in the centromeres of grass chromosomes Genetics, 150 (1998),pp. 1615-1623
    [36]
    Nagaki, K., Song, J., Stupar, R.M. et al. Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres Genetics, 163 (2003),pp. 759-770
    [37]
    Nasuda, S., Hudakova, S., Schubert, I. et al. Stable barley chromosomes without centromeric repeats Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 9842-9847
    [38]
    Neumann, P., Navrátilová, A., Schroeder-Reiter, E. et al. Stretching the rules: monocentric chromosomes with multiple centromere domains PLoS Genet., 8 (2012),p. e1002777
    [39]
    Page, S.L., Shaffer, L.G. Chromosome stability is maintained by short intercentromeric distance in functionally dicentric human Robertsonian translocations Chromosome Res., 6 (1998),pp. 115-122
    [40]
    Paweletz, N., Vig, B.K., Finze, E.M. Evolution of compound centromeres: a new phenomenon Cancer Genet. Cytogenet, 42 (1989),pp. 75-86
    [41]
    Pearce, S.R., Pich, U., Harrison, G. et al. Chromosome Res., 4 (1996),pp. 357-364
    [42]
    Rayburn, A.L., Gill, B.S. Molecular identification of the D-genome chromosomes of wheat J. Hered., 77 (1986),pp. 253-255
    [43]
    Scheinker, V.S., Lozovskaya, E.R., Bishop, J.G. et al. Proc. Natl. Acad. Sci. USA, 87 (1990),pp. 9615-9619
    [44]
    Schubert, I., Lysak, M.A. Interpretation of karyotype evolution should consider chromosome structural constraints Trends Genet., 27 (2011),pp. 207-216
    [45]
    Sears, E.R. Genetics, 31 (1946),pp. 229-230
    [46]
    Sears, E.R., Camara, A. A transmissible dicentric chromosome Genetics, 37 (1952),pp. 125-135
    [47]
    Tittel-Elmer, M., Bucher, E., Broger, L. et al. Stress-induced activation of heterochromatic transcription PLoS Genet., 6 (2010),p. e1001175
    [48]
    Vershinin, A.V., Schwarzacher, T., Heslop-Harrison, J.S. The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes Plant Cell, 7 (1995),pp. 1823-1833
    [49]
    Wang, Y.B., Hu, H., Snape, J.W. Spontaneous wheat/rye translocations from female meiotic products of hybrids between octoploid triticale and wheat Euphytica, 81 (1995),pp. 265-270
    [50]
    Yu, W.C., Han, F.P., Gao, Z. et al. Construction and behavior of engineered minichromosomes in maize Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 8924-8929
    [51]
    Zhang, W., Friebe, B., Gill, B.S. et al. Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres Chromosoma, 119 (2010),pp. 553-563
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (58) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return