5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 10
Oct.  2013
Turn off MathJax
Article Contents

Knockouts of RecA-Like Proteins RadC1 and RadC2 Have Distinct Responses to DNA Damage Agents in Sulfolobus islandicus

doi: 10.1016/j.jgg.2013.05.004
More Information
  • Corresponding author: E-mail address: yulgshen@sdu.edu.cn (Yu-Long Shen)
  • Received Date: 2013-04-24
  • Accepted Date: 2013-05-22
  • Rev Recd Date: 2013-05-17
  • Available Online: 2013-06-07
  • Publish Date: 2013-10-20
  • RecA family recombinases play essential roles in maintaining genome integrity. A group of RecA-like proteins named RadC are present in all archaea, but theirin vivo functions remain unclear. In this study, we performed phylogenetic and genetic analysis of two RadC proteins from Sulfolobus islandicus. RadC is closer to the KaiC lineage of cyanobacteria and proteobacteria than to the lineage of the recombinases (RecA, RadA, and Rad51) and the recombinase paralogs (e.g., RadB, Rad55, and Rad51B). Using the recently-established S. islandicus genetic system, we constructed deletion and over-expression strains of radC1 and radC2. Deletion of radC1 rendered the cells more sensitive to DNA damaging agents, methyl methanesulfonate (MMS), hydroxyurea (HU), and ultraviolet (UV) radiation, than the wild type, and a ΔradC1ΔradC2 double deletion strain was more sensitive to cisplatin and MMS than the ΔradC1 single deletion mutant. In addition, ectopic expression of His-tagged RadC1 revealed that RadC1 was co-purified with a putative structure-specific nuclease and ATPase, which is highly conserved in archaea. Our results indicate that both RadC1 and RadC2 are involved in DNA repair. RadC1 may play a general or primary role in DNA repair, while RadC2 plays a role in DNA repair in response to specific DNA damages.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Arcus, V.L., Backbro, K., Roos, A. et al. Distant structural homology leads to the functional characterization of an archaeal PIN domain as an exonuclease J. Biol. Chem., 279 (2004),pp. 16471-16478
    [2]
    Deng, L., Zhu, H., Chen, Z. et al. Extremophiles, 13 (2009),pp. 735-746
    [3]
    Dvornyk, V., Vinogradova, O., Nevo, E. Origin and evolution of circadian clock genes in prokaryotes Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 2495-2500
    [4]
    Gotz, D., Paytubi, S., Munro, S. et al. Responses of hyperthermophilic crenarchaea to UV irradiation Genome Biol., 8 (2007),p. R220
    [5]
    Guo, L., Brugger, K., Liu, C. et al. J. Bacteriol., 193 (2011),pp. 1672-1680
    [6]
    Guy, C.P., Haldenby, S., Brindley, A. et al. Interactions of RadB, a DNA repair protein in archaea, with DNA and ATP J. Mol. Biol., 358 (2006),pp. 46-56
    [7]
    Haldenby, S., White, M.F., Allers, T. RecA family proteins in archaea: RadA and its cousins Biochem. Soc. Trans., 37 (2009),pp. 102-107
    [8]
    Hayashi, F., Itoh, N., Uzumaki, T. et al. Roles of two ATPase-motif-containing domains in cyanobacterial circadian clock protein KaiC J. Biol. Chem., 279 (2004),pp. 52331-52337
    [9]
    Hayashi, F., Iwase, R., Uzumaki, T. et al. Hexamerization by the N-terminal domain and intersubunit phosphorylation by the C-terminal domain of cyanobacterial circadian clock protein KaiC Biochem. Biophys. Res. Commun., 348 (2006),pp. 864-872
    [10]
    Hayashi, F., Suzuki, H., Iwase, R. et al. ATP-induced hexameric ring structure of the cyanobacterial circadian clock protein KaiC Genes Cells, 8 (2003),pp. 287-296
    [11]
    Hayashi, I., Morikawa, K., Ishino, Y. Nucleic Acids Res., 27 (1999),pp. 4695-4702
    [12]
    Hays, S.L., Firmenich, A.A., Berg, P. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins Proc. Natl. Acad. Sci. USA, 92 (1995),pp. 6925-6929
    [13]
    Kang, H.J., Kubota, K., Ming, H. et al. Proteins, 75 (2009),pp. 1035-1039
    [14]
    Kawabata, M., Kawabata, T., Nishibori, M. Role of recA/RAD51 family proteins in mammals Acta Med. Okayama, 59 (2005),pp. 1-9
    [15]
    Kawarabayasi, Y., Hino, Y., Horikawa, H. et al. DNA Res., 8 (2001),pp. 123-140
    [16]
    Kim, Y.I., Dong, G., , Golden, S.S. et al. The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 12825-12830
    [17]
    Komori, K., Miyata, T., DiRuggiero, J. et al. J. Biol. Chem., 275 (2000),pp. 33782-33790
    [18]
    Lin, Z., Kong, H., Nei, M. et al. Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 10328-10333
    [19]
    Lovett, S.T. Gene, 142 (1994),pp. 103-106
    [20]
    Lupas, A.N., Martin, J. AAA proteins Curr. Opin. Struct. Biol., 12 (2002),pp. 746-753
    [21]
    Lusetti, S.L., Cox, M.M. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks Annu. Rev. Biochem., 71 (2002),pp. 71-100
    [22]
    McRobbie, A.M., Carter, L.G., Kerou, M. et al. Structural and functional characterisation of a conserved archaeal RadA paralog with antirecombinase activity J. Mol. Biol., 389 (2009),pp. 661-673
    [23]
    Niedernhofer, L.J., Lalai, A.S., Hoeijmakers, J.H. Fanconi anemia (cross)linked to DNA repair Cell, 123 (2005),pp. 1191-1198
    [24]
    Nishiwaki, T., Iwasaki, H., Ishiura, M. et al. Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 495-499
    [25]
    Peng, N., Deng, L., Mei, Y. et al. Appl. Environ. Microbiol., 78 (2012),pp. 5630-5637
    [26]
    Peng, N., Xia, Q., Chen, Z. et al. An upstream activation element exerting differential transcriptional activation on an archaeal promoter Mol. Microbiol., 74 (2009),pp. 928-939
    [27]
    Rolfsmeier, M.L., Laughery, M.F., Haseltine, C.A. J. Bacteriol., 192 (2010),pp. 4954-4962
    [28]
    Rolfsmeier, M.L., Laughery, M.F., Haseltine, C.A. J. Mol. Biol., 414 (2011),pp. 485-498
    [29]
    Sheng, D., Zhu, S., Wei, T. et al. Extremophiles, 12 (2008),pp. 147-157
    [30]
    Sung, P. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase Genes Dev., 11 (1997),pp. 1111-1121
    [31]
    Wang, L., Sheng, D., Han, W. et al. Sci. China Life Sci., 55 (2012),pp. 261-267
    [32]
    Yanowitz, J.L. Genetics, 179 (2008),pp. 249-262
    [33]
    Zhang, C., Guo, L., Deng, L. et al. Revealing the essentiality of multiple archaeal pcna genes using a mutant propagation assay based on an improved knockout method Microbiology, 156 (2010),pp. 3386-3397
    [34]
    Zheng, T., Huang, Q., Zhang, C. et al. Appl. Environ. Microbiol., 78 (2012),pp. 568-574
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (86) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return