[1] |
Andersen, B., Rosenfeld, M.G. POU domain factors in the neuroendocrine system: lessons from developmental biology provide insights into human disease Endocr. Rev., 22 (2001),pp. 2-35
|
[2] |
Assa-Munt, N., Mortishire-Smith, R.J., Aurora, R. et al. The solution structure of the Oct-1 POU-specific domain reveals a striking similarity to the bacteriophage lambda repressor DNA-binding domain Cell, 73 (1993),pp. 193-205
|
[3] |
Babaie, Y., Herwig, R., Greber, B. et al. Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells Stem Cells, 25 (2007),pp. 500-510
|
[4] |
Bartel, D.P. MicroRNAs: target recognition and regulatory functions Cell, 136 (2009),pp. 215-233
|
[5] |
Cook, A.L., Sturm, R.A. Pigment Cell Melanoma Res., 21 (2008),pp. 611-626
|
[6] |
Crowther-Swanepoel, D., Broderick, P., Di Bernardo, M.C. et al. Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk Nat. Genet., 42 (2010),pp. 132-136
|
[7] |
Erkman, L., McEvilly, R.J., Luo, L. et al. Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development Nature, 381 (1996),pp. 603-606
|
[8] |
Goff, L.A., Davila, J., Swerdel, M.R. et al. Ago2 immunoprecipitation identifies predicted microRNAs in human embryonic stem cells and neural precursors PLoS ONE, 4 (2009),p. e7192
|
[9] |
Gordon, B.R.G., Li, Y.F., Wang, L.R. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),p. 18741
|
[10] |
Grimson, A., Farh, K.K., Johnston, W.K. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing Mol. Cell, 27 (2007),pp. 91-105
|
[11] |
Gstaiger, M., Georgiev, O., van Leeuwen, H. et al. The B cell coactivator Bob1 shows DNA sequence-dependent complex formation with Oct-1/Oct-2 factors, leading to differential promoter activation EMBO J., 15 (1996),pp. 2781-2790
|
[12] |
Hammachi, F., Morrison, G.M., Sharov, A.A. et al. Cell Rep., 1 (2012),pp. 99-109
|
[13] |
Heckman, C.A., Duan, H., Garcia, P.B. et al. Oncogene, 25 (2006),pp. 888-898
|
[14] |
Herman, J.P., Jullien, N., Guillen, S. et al. Mol. Endocrinol., 26 (2012),pp. 1455-1463
|
[15] |
Hofmann, E., Reichart, U., Gausterer, C. et al. Octamer-binding factor 6 (Oct-6/Pou3f1) is induced by interferon and contributes to dsRNA-mediated transcriptional responses BMC Cell Biol., 11 (2010),p. 61
|
[16] |
Hunsaker, T.L., Jefferson, H.S., Morrison, J.K. et al. POU1F1-mediated activation of hGH-N by deoxyribonuclease I hypersensitive site II of the human growth hormone locus control region J. Mol. Biol., 415 (2012),pp. 29-45
|
[17] |
Kastler, S., Honold, L., Luedeke, M. et al. Prostate, 70 (2010),pp. 666-674
|
[18] |
Kusenda, B., Mraz, M., Mayer, J. et al. MicroRNA biogenesis, functionality and cancer relevance Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub., 150 (2006),pp. 205-215
|
[19] |
Lau, F., Ahfeldt, T., Osafune, K. et al. Induced pluripotent stem (iPS) cells: an up-to-the-minute review F1000 Biol. Rep., 1 (2009),p. 84
|
[20] |
Li, J., Pan, G.J., Cui, K. et al. A dominant-negative form of mouse SOX2 induces trophectoderm differentiation and progressive polyploidy in mouse embryonic stem cells J. Biol. Chem., 282 (2007),pp. 19481-19492
|
[21] |
Loh, Y.H., Wu, Q., Chew, J.L. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells Nat. Genet., 38 (2006),pp. 431-440
|
[22] |
Looijenga, L.H., Stoop, H., de Leeuw, H.P. et al. POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors Cancer Res., 63 (2003),pp. 2244-2250
|
[23] |
Mayshar, Y., Ben-David, U., Lavon, N. et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells Cell Stem Cell, 7 (2010),pp. 521-531
|
[24] |
McEvilly, R.J., Erkman, L., Luo, L. et al. Nature, 384 (1996),pp. 574-577
|
[25] |
Naeem, H., Kuffner, R., Zimmer, R. MIRTFnet: analysis of miRNA regulated transcription factors PLoS ONE, 6 (2011),p. e22519
|
[26] |
Perotti, D., De Vecchi, G., Testi, M.A. et al. Hum. Mutat., 24 (2004),pp. 400-407
|
[27] |
Pesce, M., Scholer, H.R. Oct-4: gatekeeper in the beginnings of mammalian development Stem Cells, 19 (2001),pp. 271-278
|
[28] |
Punta, M., Coggill, P.C., Eberhardt, R.Y. et al. The Pfam protein families database Nucleic Acids Res., 40 (2012),pp. D290-301
|
[29] |
Ryu, E.J., Wang, J.Y., Le, N. et al. Misexpression of Pou3f1 results in peripheral nerve hypomyelination and axonal loss J. Neurosci., 27 (2007),pp. 11552-11559
|
[30] |
Schoeftner, S., Scarola, M., Comisso, E. et al. An Oct4-pRB axis, controlled by MiR-335, integrates stem cell self-renewal and cell cycle control Stem Cells, 1315 (2013),pp. 717-728
|
[31] |
Sempere, L.F., Freemantle, S., Pitha-Rowe, I. et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation Genome Biol., 5 (2004),p. R13
|
[32] |
Shi, G., Jin, Y. Role of Oct4 in maintaining and regaining stem cell pluripotency Stem Cell Res. Ther., 1 (2010),p. 39
|
[33] |
Shi, G., Sohn, K.C., Choi, D.K. et al. Brn2 is a transcription factor regulating keratinocyte differentiation with a possible role in the pathogenesis of lichen planus PLoS ONE, 5 (2010),p. e13216
|
[34] |
Smith, M.D., Dawson, S.J., Boxer, L.M. et al. Nucleic Acids Res., 26 (1998),pp. 4100-4107
|
[35] |
Sreenivasan, S., Viljoen, C.D. OCT1 identity crisis Gene, 516 (2013),pp. 190-191
|
[36] |
Sterneckert, J., Hoing, S., Scholer, H.R. Concise review: Oct4 and more: the reprogramming expressway Stem Cells, 30 (2012),pp. 15-21
|
[37] |
Tamura, K., Peterson, D., Peterson, N. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods Mol. Biol. Evol., 28 (2011),pp. 2731-2739
|
[38] |
Urrutia, R. Exploring the role of homeobox and zinc finger proteins in pancreatic cell proliferation, differentiation, and apoptosis Int. J. Pancreatol., 22 (1997),pp. 1-14
|
[39] |
Wang, X., Chen, X., Zhang, H. et al. Shared gene regulation during human somatic cell reprogramming J. Genet. Genomics, 39 (2012),pp. 613-623
|
[40] |
Wang, Z., Sheng, C., Li, T. et al. Generation of tripotent neural progenitor cells from rat embryonic stem cells J. Genet. Genomics, 39 (2012),pp. 643-651
|
[41] |
Wei, Zong, Yang, et al. Klf4 directly interacts with Oct4 and Sox2 to promote reprogramming Stem Cells, 22 (2009),pp. 2969-2978
|
[42] |
Welter, J.F., Gali, H., Crish, J.F. et al. Regulation of human involucrin promoter activity by POU domain proteins J. Biol. Chem., 271 (1996),pp. 14727-14733
|
[43] |
Wilhite, S.E., Barrett, T. Strategies to explore functional genomics data sets in NCBI's GEO database Methods Mol. Biol., 802 (2012),pp. 41-53
|
[44] |
Yamanaka, S., Blau, H.M. Nuclear reprogramming to a pluripotent state by three approaches Nature, 465 (2010),pp. 704-712
|
[45] |
Yang, F.K., Yao, Y.X., Jiang, Y.P. et al. Sumoylation is important for stability, subcellular localization, and transcriptional activity of SALL4, an essential stem cell transcription factor J. Biol. Chem., 287 (2012),pp. 38600-38608
|
[46] |
Zhang, L., Ju, X., Cheng, Y. et al. BMC Syst. Biol., 5 (2011),p. 152
|
[47] |
Zhao, X.Y., Li, W., Lv, Z. et al. iPS cells produce viable mice through tetraploid complementation Nature, 461 (2009),pp. 86-90
|