5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 5
May  2013
Turn off MathJax
Article Contents

Imprinting in Plants and Its Underlying Mechanisms

doi: 10.1016/j.jgg.2013.04.003
More Information
  • Corresponding author: E-mail address: wuxj@sicau.edu.cn (Xianjun Wu)
  • Received Date: 2013-01-28
  • Accepted Date: 2013-04-06
  • Rev Recd Date: 2013-04-02
  • Available Online: 2013-04-20
  • Publish Date: 2013-05-20
  • Genomic imprinting (or imprinting) refers to an epigenetic phenomenon by which the allelic expression of a gene depends on the parent of origin. It has evolved independently in placental mammals and flowering plants. In plants, imprinting is mainly found in endosperm. Recent genome-wide surveys in Arabidopsis, rice, and maize identified hundreds of imprinted genes in endosperm. Since these genes are of diverse functions, endosperm development is regulated at different regulatory levels. The imprinted expression of only a few genes is conserved between Arabidopsis and monocots, suggesting that imprinting evolved quickly during speciation. In Arabidopsis, DEMETER (DME) mediates hypomethylation in the maternal genome at numerous loci (mainly transposons and repeats) in the central cell and results in many differentially methylated regions between parental genomes in the endosperm, and subsequent imprinted expression of some genes. In addition, histone modification mediated by Polycomb group (PcG) proteins is also involved in regulating imprinting. DME-induced hypomethylated alleles in the central cell are considered to produce small interfering RNAs (siRNAs) which are imported to the egg to reinforce DNA methylation. In parallel, the activity of DME in the vegetative cell of the male gametophyte demethylates many regions which overlap with the demethylated regions in the central cell. siRNAs from the demethylated regions are hypothesized to be also transferred into sperm to reinforce DNA methylation. Imprinting is partly the result of genome-wide epigenetic reprogramming in the central cell and vegetative cell and evolved under different selective pressures.
  • loading
  • [1]
    Baroux, C., Gagliardini, V., Page, D.R. et al. Genes Dev., 20 (2006),pp. 1081-1086
    [2]
    Belmonte, M.F., Kirkbride, R.C., Stone, S.L. et al. Proc. Natl. Acad. Sci. USA, 110 (2013),pp. E435-E444
    [3]
    Berger, F., Vu, T.M., Li, J. et al.
    [4]
    Bird, A. Perceptions of epigenetics Nature, 447 (2007),pp. 396-398
    [5]
    Calarco, J.P., Borges, F., Donoghue, M.T. et al. Cell, 151 (2012),pp. 194-205
    [6]
    Chaudhury, A.M., Luo, M., Miller, C. et al. Proc. Natl. Acad. Sci. USA, 94 (1997),pp. 4223-4228
    [7]
    Chen, G., Wang, C., Shi, T. Overview of available methods for diverse RNA-Seq data analyses Sci. China Life Sci., 54 (2011),pp. 1121-1128
    [8]
    Choi, Y., Gehring, M., Johnson, L. et al. Cell, 110 (2002),pp. 33-42
    [9]
    Dilkes, B.P., Comai, L. A differential dosage hypothesis for parental effects in seed development Plant Cell, 16 (2004),pp. 3174-3180
    [10]
    Feil, R., Berger, F. Convergent evolution of genomic imprinting in plants and mammals Trends Genet., 23 (2007),pp. 192-199
    [11]
    Feng, S.H., Cokus, S.J., Zhang, X.Y. et al. Conservation and divergence of methylation patterning in plants and animals Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 8689-8694
    [12]
    Gehring, M., Missirian, V., Henikoff, S. PLoS ONE, 6 (2011),p. e23687
    [13]
    Gehring, M., Huh, J.H., Hsieh, T.F. et al. Cell, 124 (2006),pp. 495-506
    [14]
    Gehring, M., Bubb, K.L., Henikoff, S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting Science, 324 (2009),pp. 1447-1451
    [15]
    Gutierrez-Marcos, J.F., Costa, L.M., Dal Pra, M. et al. Epigenetic asymmetry of imprinted genes in plant gametes Nat. Genet., 38 (2006),pp. 876-878
    [16]
    Haig, D., Westoby, M. Parent specific gene expression and the triploid endosperm Am. Nat., 134 (1989),pp. 147-155
    [17]
    Haun, W.J., Springer, N.M. Maternal and paternal alleles exhibit differential histone methylation and acetylation at maize imprinted genes Plant J., 56 (2008),pp. 903-912
    [18]
    Hennig, L., Derkacheva, M. Diversity of Polycomb group complexes in plants: same rules, different players? Trends Genet., 25 (2009),pp. 414-423
    [19]
    Hsieh, T.F., Shin, J., Uzawa, R. et al. Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 1755-1762
    [20]
    Hsieh, T.F., Ibarra, Silva, P., Zemach, A. et al. Science, 324 (2009),pp. 1451-1454
    [21]
    Ibarra, Feng, X.Q., Schoft, V.K., Hsieh, T.F. et al. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes Science, 337 (2012),pp. 1360-1364
    [22]
    Ikeda, Y., Kinoshita, Y., Susaki, D. et al. Dev. Cell, 21 (2011),pp. 589-596
    [23]
    Jahnke, S., Scholten, S. Epigenetic resetting of a gene imprinted in plant embryos Curr. Biol., 19 (2009),pp. 1677-1681
    [24]
    Jullien, P.E., Kinoshita, T., Ohad, N. et al. Plant Cell, 18 (2006),pp. 1360-1372
    [25]
    Jullien, P.E., Mosquna, A., Ingouff, M. et al. PLoS Biol., 6 (2008),p. e194
    [26]
    Jullien, P.E., Katz, A., Oliva, M. et al. Curr. Biol., 16 (2006),pp. 486-492
    [27]
    Jullien, P.E., Susaki, D., Yelagandula, R. et al. Curr. Biol., 22 (2012),pp. 1825-1830
    [28]
    Kermicle, J.L. Dependence of the R-mottled aleurone phenotype in maize on the mode of sexual transmission Genetics, 66 (1970),pp. 69-85
    [29]
    Kinoshita, Y., Saze, H., Kinoshita, T. et al. Plant J., 49 (2007),pp. 38-45
    [30]
    Kinoshita, T. Reproductive barrier and genomic imprinting in the endosperm of flowering plants Genes Genet. Syst., 82 (2007),pp. 177-186
    [31]
    Kinoshita, T., Miura, A., Choi, Y. et al. Science, 303 (2004),pp. 521-523
    [32]
    Kinoshita, T., Yadegari, R., Harada, J.J. et al. Plant Cell, 11 (1999),pp. 1945-1952
    [33]
    Kohler, C., Page, D.R., Gagliardini, V. et al. Nat. Genet., 37 (2005),pp. 28-30
    [34]
    Law, J.A., Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals Nat. Rev. Genet., 11 (2010),pp. 204-220
    [35]
    Luo, M., Bilodeau, P., Dennis, E.S. et al. Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 10637-10642
    [36]
    Luo, M., Taylor, J.M., Spriggs, A. et al. A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm PLoS Genet., 7 (2011),p. e1002125
    [37]
    Luo, M., Platten, D., Chaudhury, A. et al. Expression, imprinting, and evolution of rice homologs of the Polycomb group genes Mol. Plant, 2 (2009),pp. 711-723
    [38]
    Makarevich, G., Villar, C.B., Erilova, A. et al. J. Cell Sci., 121 (2008),pp. 906-912
    [39]
    Mosher, R.A., Melnyk, C.W., Kelly, K.A. et al. Nature, 460 (2009),pp. 283-286
    [40]
    Raissig, M.T., Baroux, C., Grossniklaus, U. Regulation and flexibility of genomic imprinting during seed development Plant Cell, 23 (2011),pp. 16-26
    [41]
    Schatlowski, N., Köhler, C. Tearing down barriers: understanding the molecular mechanisms of interploidy hybridizations J. Exp. Bot., 63 (2012),pp. 6059-6067
    [42]
    Schuettengruber, B., Cavalli, G. Recruitment of Polycomb group complexes and their role in the dynamic regulation of cell fate choice Development, 136 (2009),pp. 3531-3542
    [43]
    Scott, R.J., Spielman, M., Bailey, J. et al. Development, 125 (1998),pp. 3329-3341
    [44]
    Slotkin, R.K., Vaughn, M., Borges, F. et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen Cell, 136 (2009),pp. 461-472
    [45]
    Tiwari, S., Schulz, R., Ikeda, Y. et al. Plant Cell, 20 (2008),pp. 2387-2398
    [46]
    Villar, C.B., Erilova, A., Makarevich, G. et al. Mol. Plant, 2 (2009),pp. 654-660
    [47]
    Waters, A.J., Makarevitcha, I., Eichtena, S.R. et al. Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm Plant Cell, 23 (2011),pp. 4221-4233
    [48]
    Weinhofer, I., Hehenberger, E., Roszak, P. et al. H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation PLoS Genet., 6 (2010),p. e1001152
    [49]
    Wolff, Weinhofer, I., Seguin, J., Roszak, P. et al. PLoS Genet., 7 (2011),p. e1002126
    [50]
    Wolf, J.B., Hager, R. A maternal-offspring coadaptation theory for the evolution of genomic imprinting PLoS Biol., 4 (2006),p. e380
    [51]
    Zemach, A., Kim, M.Y., Silva, P. et al. Local DNA hypomethylation activates genes in rice endosperm Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 18729-18734
    [52]
    Zhang, L.G., Cheng, Z.J., Qin, R.Z. et al. Plant Cell, 4 (2012),pp. 4407-4421
    [53]
    Zhang, M., Zhao, H.N., Xie, S.J. et al. Extensive, clustered parental imprinting of protein-coding and noncoding RNAs in developing maize endosperm Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 20042-20047
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (91) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return