[1] |
Afshar, G., Murnane, J.P. Gene, 234 (1999),pp. 161-168
|
[2] |
Alcaín, F.J., Villalba, J.M. Sirtuin activators Expert Opin. Ther. Pat., 19 (2009),pp. 403-414
|
[3] |
Bach, F.H., Bach, M.L., Sondel, P.M. Differential function of major histocompatibility complex antigens in T-lymphocyte activation Nature, 259 (1976),pp. 273-281
|
[4] |
Bartok, B., Firestein, G.S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis Immunol. Rev., 233 (2011),pp. 233-255
|
[5] |
Bonizzi, G., Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity Trends Immunol., 25 (2004),pp. 280-288
|
[6] |
Borra, M.T., Smith, B.C., Denu, J.M. Mechanism of human SIRT1 activation by resveratrol J. Biol. Chem., 280 (2005),pp. 17187-17195
|
[7] |
Brunet, A., Sweeney, L.B., Sturgill, J.F. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase Science, 303 (2004),pp. 2011-2015
|
[8] |
Byun, H.S., Song, J.K., Kim, Y.-R. et al. Caspase-8 has an essential role in resveratrol-induced apoptosis of rheumatoid fibroblast-like synoviocytes Rheumatology, 47 (2008),pp. 301-308
|
[9] |
Calfon, M., Zeng, H., Urano, F. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA Nature, 415 (2002),pp. 92-96
|
[10] |
Chen, L.-f., Mu, Y., Greene, W.C. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB EMBO J., 21 (2002),pp. 6539-6548
|
[11] |
Chen, Y., Mohapatra, S., Mohapatra, S.S. et al. Cell. Immunol., 149 (1993),pp. 409-421
|
[12] |
Cheng, H.L., Mostoslavsky, R., Saito, S. et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 10794-10799
|
[13] |
Droin, N.M., Pinkoski, M.J., Dejardin, E. et al. Egr family members regulate nonlymphoid expression of Fas ligand, TRAIL, and tumor necrosis factor during immune responses Mol. Cell. Biol., 23 (2003),pp. 7638-7647
|
[14] |
Dvir-Ginzberg, M., Gagarina, V., Lee, E.J. et al. Tumor necrosis factor α-mediated cleavage and inactivation of SirT1 in human osteoarthritic chondrocytes Arthritis Rheum., 63 (2011),pp. 2363-2373
|
[15] |
Elmali, N., Baysal, O., Harma, A. et al. Effects of eesveratrol in inflammatory arthritis Inflammation, 30 (2007),pp. 1-6
|
[16] |
Fang, D., Elly, C., Gao, B. et al. Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation Nat. Immunol., 3 (2002),pp. 281-287
|
[17] |
Fang, D., Wang, H.Y., Fang, N. et al. Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells J. Biol. Chem., 276 (2001),pp. 4872-4878
|
[18] |
Fiocco, U., Sfriso, P., Lunardi, F. et al. Molecular pathways involved in synovial cell inflammation and tumoral proliferation in diffuse pigmented villonodular synovitis Autoimmun. Rev., 9 (2011),pp. 780-784
|
[19] |
Foletta, V., Segal, D., Cohen, D. Transcriptional regulation in the immune system: all roads lead to AP-1 J. Leukoc. Biol., 63 (1998),pp. 139-152
|
[20] |
Fujisawa, K., Aono, H., Hasunuma, T. et al. Activation of transcription factor NF-κB in human synovial cells in response to tumor necrosis factor α Arthritis Rheum., 39 (1996),pp. 197-203
|
[21] |
Gao, B., Kong, Q., Kemp, K. et al. Analysis of sirtuin 1 expression reveals a molecular explanation of IL-2-mediated reversal of T-cell tolerance Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 899-904
|
[22] |
Gao, Z., Ye, J. Inhibition of transcriptional activity of c-JUN by SIRT1 Biochem. Biophys. Res. Commun., 376 (2008),pp. 793-796
|
[23] |
Grabiec, A.M., Tak, P.P., Reedquist, K.A. Function of histone deacetylase inhibitors in inflammation Crit. Rev. Immunol., 31 (2011),pp. 233-263
|
[24] |
Guerder, S., Picarella, D.E., Linsley, P.S. et al. Costimulator B7-1 confers antigen-presenting-cell function to parenchymal tissue and in conjunction with tumor necrosis factor α leads to autoimmunity in transgenic mice Proc. Natl. Acad. Sci. USA, 91 (1994),pp. 5138-5142
|
[25] |
Harris, J.E., Bishop, K.D., Phillips, N.E. et al. J. Immunol., 173 (2004),pp. 7331-7338
|
[26] |
Holoshitz, J., Matitiau, A., Cohen, I.R. Arthritis induced in rats by cloned T lymphocytes responsive to mycobacteria but not to collagen type II J. Clin. Invest., 73 (1984),pp. 211-215
|
[27] |
Hoyne, G.F. Mechanisms that regulate peripheral immune responses to control organ-specific autoimmunity Clin. Dev. Immunol., 2011 (2011),p. 294968
|
[28] |
Hu, P., Han, Z., Couvillon, A.D. et al. Autocrine tumor necrosis factor α links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-Regulation of TRAF2 expression Mol. Cell. Biol., 26 (2006),pp. 3071-3084
|
[29] |
Hu, X., Chakravarty, S.D., Ivashkiv, L.B. Regulation of interferon and Toll-like receptor signaling during macrophage activation by opposing feedforward and feedback inhibition mechanisms Immunol. Rev., 226 (2008),pp. 41-56
|
[30] |
Huang, Q.Q., Sobkoviak, R., Jockheck-Clark, A.R. et al. J. Immunol., 182 (2009),pp. 4965-4973
|
[31] |
Huang, W., Shang, W.L., Wang, H.D. et al. Acta Pharmacol. Sin., 33 (2012),pp. 668-674
|
[32] |
Imai, S., Armstrong, C.M., Kaeberlein, M. et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase Nature, 403 (2000),pp. 795-800
|
[33] |
, Petro, T.M. Int. Immunopharmacol., 9 (2009),pp. 134-143
|
[34] |
Jain, J., McCaffrey, P.G., Valge-Archer, V.E. et al. Nuclear factor of activated T cells contains Fos and Jun Nature, 356 (1992),pp. 801-804
|
[35] |
Jain, J., Valge-Archer, V.E., Rao, A. Analysis of the AP-1 sites in the IL-2 promoter J. Immunol., 148 (1992),pp. 1240-1250
|
[36] |
Jain, J., Valge-Archer, V.E., Sinskey, A.J. et al. The AP-1 site at -150 bp, but not the NF-κB site, is likely to represent the major target of protein kinase C in the interleukin 2 promoter J. Exp. Med., 175 (1992),pp. 853-862
|
[37] |
Jung, S., Yaron, A., Alkalay, I. et al. Costimulation requirement for AP-1 and NF-κB transcription factor activation in T cells Ann. N. Y. Acad. Sci., 766 (1995),pp. 245-252
|
[38] |
Kang, S.M., Beverly, B., Tran, A.C. et al. Transactivation by AP-1 is a molecular target of T cell clonal anergy Science, 257 (1992),pp. 1134-1138
|
[39] |
Kok, S.H., Lin, L.D., Hou, K.L. et al. Simvastatin inhibits Cyr61 expression in rheumatoid arthritis synovial fibroblasts through the regulation of SIRT1/FoxO3a signaling Arthritis Rheum., 65 (2013),pp. 639-649
|
[40] |
Kong, S., Kim, S.-J., Sandal, B. et al. The type III histone deacetylase Sirt1 protein suppresses p300-mediated histone H3 lysine 56 acetylation at Bclaf1 promoter to inhibit T cell activation J. Biol. Chem., 286 (2011),pp. 16967-16975
|
[41] |
Lazarevic, V., Zullo, A.J., Schweitzer, M.N. et al. The gene encoding early growth response 2, a target of the transcription factor NFAT, is required for the development and maturation of natural killer T cells Nat. Immunol., 10 (2009),pp. 306-313
|
[42] |
Lee, S.M., Yang, H., Tartar, D. et al. Prevention and treatment of diabetes with resveratrol in a non-obese mouse model of type 1 diabetes Diabetologia, 54 (2011),pp. 1136-1146
|
[43] |
Lenschow, D.J., Zeng, Y., Thistlethwaite, J.R. et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg Science, 257 (1992),pp. 789-792
|
[44] |
Lin, L., Hron, J.D., Peng, S.L. Regulation of NF-κB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a Immunity, 21 (2004),pp. 203-213
|
[45] |
Lin, Z., Yang, H., Kong, Q. et al. USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development Mol. Cell, 46 (2012),pp. 484-494
|
[46] |
Liszt, G., Ford, E., Kurtev, M. et al. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase J. Biol. Chem., 280 (2005),pp. 21313-21320
|
[47] |
Macián, F., GarcIa-Cózar, F., Im, S.-H. et al. Transcriptional mechanisms underlying lymphocyte tolerance Cell, 109 (2002),pp. 719-731
|
[48] |
Manna, S.K., Mukhopadhyay, A., Aggarwal, B.B. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-κB, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation J. Immunol., 164 (2000),pp. 6509-6519
|
[49] |
Marok, R., Winyard, P.G., Coumbe, A. et al. Activation of the transcription factor nuclear factor-κB in human inflamed synovial tissue Arthritis Rheum., 39 (1996),pp. 583-591
|
[50] |
Martinon, F., Chen, X., Lee, A.H. et al. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages Nat. Immunol., 11 (2010),pp. 411-418
|
[51] |
McBurney, M.W., Yang, X., Jardine, K. et al. The absence of SIR2alpha protein has no effect on global gene silencing in mouse embryonic stem cells Mol. Cancer Res., 1 (2003),pp. 402-409
|
[52] |
McInnes, I.B., Liew, F.Y., Gracie, J.A. Interleukin-18: a therapeutic target in rheumatoid arthritis? Arthritis Res. Ther., 7 (2005),pp. 38-41
|
[53] |
Mondino, A., Whaley, C.D., DeSilva, D.R. et al. Defective transcription of the IL-2 gene is associated with impaired expression of c-Fos, FosB, and JunB in anergic T helper 1 cells J. Immunol., 157 (1996),pp. 2048-2057
|
[54] |
Moon, M.H., Jeong, J.K., Lee, Y.J. et al. SIRT1, a class III histone deacetylase, regulates TNF-α-induced inflammation in human chondrocytes Osteoarthritis Cartilage, 21 (2013),pp. 470-480
|
[55] |
Morand, E.F. New therapeutic target in inflammatory disease: macrophage migration inhibitory factor Intern. Med. J., 35 (2005),pp. 419-426
|
[56] |
Motta, M.C., Divecha, N., Lemieux, M. et al. Mammalian SIRT1 represses forkhead transcription factors Cell, 116 (2004),pp. 551-563
|
[57] |
Nakayama, H., Yaguchi, T., Yoshiya, S. et al. Resveratrol induces apoptosis MH7A human rheumatoid arthritis synovial cells in a sirtuin 1-dependent manner Rheumatol. Int., 32 (2012),pp. 151-157
|
[58] |
Niederer, F., Ospelt, C., Brentano, F. et al. SIRT1 overexpression in the rheumatoid arthritis synovium contributes to proinflammatory cytokine production and apoptosis resistance Ann. Rheum. Dis., 70 (2011),pp. 1866-1873
|
[59] |
Ofosu-Appiah, W.A., Warrington, R.J., Wilkins, J.A. Interleukin 2 responsive T cell clones from rheumatoid and normal subjects: proliferative responses to connective tissue elements Clin. Immunol. Immunopathol., 50 (1989),pp. 264-271
|
[60] |
Ohori, M. ERK inhibitors as a potential new therapy for rheumatoid arthritis Drug News Perspect., 21 (2008),pp. 245-250
|
[61] |
Oppenheimer, H., Gabay, O., Meir, H. et al. 75-kd sirtuin 1 blocks tumor necrosis factor α-mediated apoptosis in human osteoarthritic chondrocytes Arthritis Rheum., 64 (2012),pp. 718-728
|
[62] |
Powell, J.D., Lerner, C.G., Ewoldt, G.R. et al. The -180 site of the IL-2 promoter is the target of CREB/CREM binding in T cell anergy J. Immunol., 163 (1999),pp. 6631-6639
|
[63] |
Price, Nathan L., Gomes, Ana P., Ling, Alvin J.Y. et al. SIRT1 is required for AMPK activation and the beneficial effects of Resveratrol on mitochondrial function Cell Metab., 15 (2012),pp. 675-690
|
[64] |
Recio, M.C., Andujar, I., Rios, J.L. Anti-inflammatory agents from plants: progress and potential Curr. Med. Chem., 19 (2012),pp. 2088-2103
|
[65] |
Rengarajan, J., Mittelstadt, P.R., Mages, H.W. et al. Sequential involvement of NFAT and Egr transcription factors in FasL regulation Immunity, 12 (2000),pp. 293-300
|
[66] |
Rincon, M., Flavell, R.A. AP-1 transcriptional activity requires both T-cell receptor-mediated and co-stimulatory signals in primary T lymphocytes EMBO J., 13 (1994),pp. 4370-4381
|
[67] |
Roelofs, M.F., Boelens, W.C., Joosten, L.A. et al. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis J. Immunol., 176 (2006),pp. 7021-7027
|
[68] |
Safford, M., Collins, S., Lutz, M.A. et al. Egr-2 and Egr-3 are negative regulators of T cell activation Nat. Immunol., 6 (2005),pp. 472-480
|
[69] |
Sánchez-Fidalgo, S., Cárdeno, A., Villegas, I. et al. Dietary supplementation of resveratrol attenuates chronic colonic inflammation in mice Eur. J. Pharmacol., 633 (2010),pp. 78-84
|
[70] |
Schug, T.T., Xu, Q., Gao, H. et al. Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress Mol. Cell. Biol., 30 (2010),pp. 4712-4721
|
[71] |
Schwartz, R.H. T cell clonal anergy Curr. Opin. Immunol., 9 (1997),pp. 351-357
|
[72] |
Schwartz, R.H. T cell anergy Annu. Rev. Immunol., 21 (2003),pp. 305-334
|
[73] |
Sen, M. Wnt signalling in rheumatoid arthritis Rheumatology (Oxford), 44 (2005),pp. 708-713
|
[74] |
Shakibaei, M., Buhrmann, C., Mobasheri, A. Resveratrol-mediated SIRT-1 interactions with p300 modulate receptor activator of NF-κB ligand (RANKL) activation of NF-κB signaling and inhibit osteoclastogenesis in bone-derived cells J. Biol. Chem., 286 (2011),pp. 11492-11505
|
[75] |
Simmonds, R.E., Foxwell, B.M. Signalling, inflammation and arthritis: NF-κB and its relevance to arthritis and inflammation Rheumatology (Oxford), 47 (2008),pp. 584-590
|
[76] |
Sloan-Lancaster, J., Evavold, B.D., Allen, P.M. Th2 cell clonal anergy as a consequence of partial activation J. Exp. Med., 180 (1994),pp. 1195-1205
|
[77] |
Sloan-Lancaster, J., Shaw, A.S., Rothbard, J.B. et al. Partial T cell signaling: altered phospho-zeta and lack of zap70 recruitment in APL-induced T cell anergy Cell, 79 (1994),pp. 913-922
|
[78] |
Solomon, J.M., Pasupuleti, R., Xu, L. et al. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage Mol. Cell. Biol., 26 (2006),pp. 28-38
|
[79] |
Stahl, M., Dijkers, P.F., Kops, G.J. et al. The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2 J. Immunol., 168 (2002),pp. 5024-5031
|
[80] |
Stamp, L.K., James, M.J., Cleland, L.G. Interleukin-17: the missing link between T-cell accumulation and effector cell actions in rheumatoid arthritis? Immunol. Cell Biol., 82 (2004),pp. 1-9
|
[81] |
Stein, S., Schafer, N., Breitenstein, A. et al. Aging (Albany NY), 2 (2010),pp. 353-360
|
[82] |
Sutmuller, R., Garritsen, A., Adema, G.J. Regulatory T cells and toll-like receptors: regulating the regulators Ann. Rheum. Dis., 66 (2007),pp. iii91-iii95
|
[83] |
Tak, P.P. Chemokine inhibition in inflammatory arthritis Best Pract. Res. Clin. Rheumatol., 20 (2006),pp. 929-939
|
[84] |
Thomas, R.M., Chunder, N., Chen, C. et al. J. Immunol., 179 (2007),pp. 7305-7315
|
[85] |
Turka, L.A., Linsley, P.S., Lin, H. et al. Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 11102-11105
|
[86] |
Ullman, K.S., Northrop, J.P., Admon, A. et al. Jun family members are controlled by a calcium-regulated, cyclosporin A-sensitive signaling pathway in activated T lymphocytes Genes Dev., 7 (1993),pp. 188-196
|
[87] |
Venuprasad, K. Cbl-b and itch: key regulators of peripheral T-cell tolerance Cancer Res., 70 (2010),pp. 3009-3012
|
[88] |
Villalba, J.M., Alcain, F.J. Sirtuin activators and inhibitors Biofactors, 38 (2012),pp. 349-359
|
[89] |
Wang, F.M., Chen, Y.J., Ouyang, H.J. Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation Biochem. J., 433 (2010),pp. 245-252
|
[90] |
Xuzhu, G., Komai-Koma, M., Leung, B.P. et al. Resveratrol modulates murine collagen-induced arthritis by inhibiting Th17 and B-cell function Ann. Rheum. Dis., 71 (2012),pp. 129-135
|
[91] |
Yamamoto, Y., Gaynor, R.B. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer J. Clin. Invest., 107 (2001),pp. 135-142
|
[92] |
Yang, S.-R., Wright, J., Bauter, M. et al. Am. J. Physiol. Lung Cell. Mol. Physiol., 292 (2007),pp. L567-L576
|
[93] |
Yavuz, S., Elbir, Y., Tulunay, A. et al. Differential expression of toll-like receptor 6 on granulocytes and monocytes implicates the role of microorganisms in Behcet's disease etiopathogenesis Rheumatol. Int., 28 (2008),pp. 401-406
|
[94] |
Yeung, F., Hoberg, J.E., Ramsey, C.S. et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase EMBO J., 23 (2004),pp. 2369-2380
|
[95] |
Yuan, J., Minter-Dykhouse, K., Lou, Z. A c-Myc–SIRT1 feedback loop regulates cell growth and transformation J. Cell Biol., 185 (2009),pp. 203-211
|
[96] |
Yuan, Z., Zhang, X., Sengupta, N. et al. SIRT1 regulates the function of the Nijmegen breakage syndrome protein Mol. Cell, 27 (2007),pp. 149-162
|
[97] |
Zhang, J., Lee, S.M., Shannon, S. et al. The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice J. Clin. Invest., 119 (2009),pp. 3048-3058
|
[98] |
Zhang, R., Chen, H.Z., Liu, J.J. et al. SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages J. Biol. Chem., 285 (2010),pp. 7097-7110
|