5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 7
Jul.  2013
Turn off MathJax
Article Contents

The Class III Histone Deacetylase Sirtuin 1 in Immune Suppression and Its Therapeutic Potential in Rheumatoid Arthritis

doi: 10.1016/j.jgg.2013.04.001
More Information
  • Corresponding author: E-mail address: FangD@Northwestern.edu (Deyu Fang)
  • Received Date: 2013-01-04
  • Accepted Date: 2013-04-07
  • Rev Recd Date: 2013-02-18
  • Available Online: 2013-04-12
  • Publish Date: 2013-07-20
  • Rheumatoid arthritis (RA) is a chronic debilitating disease of the joints. Both the innate and adaptive immune responses participate in the development and progression of RA. While several therapeutic reagents, such as TNF-α agonists, have been successfully developed for the clinical use in the treatment of RA, more than half of the patients do not respond to anti-TNF therapy. Therefore, new therapeutic reagents are needed. Recent studies have shown that sirtuin 1 (Sirt1), a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase, is a critical negative regulator of both the innate and adaptive immune response in mice, and its altered functions are likely to be involved in autoimmune diseases. Small molecules that modulate Sirt1 functions are potential therapeutic reagents for autoimmune inflammatory diseases. This review highlights the role of Sirt1 in immune regulation and RA.
  • loading
  • [1]
    Afshar, G., Murnane, J.P. Gene, 234 (1999),pp. 161-168
    [2]
    Alcaín, F.J., Villalba, J.M. Sirtuin activators Expert Opin. Ther. Pat., 19 (2009),pp. 403-414
    [3]
    Bach, F.H., Bach, M.L., Sondel, P.M. Differential function of major histocompatibility complex antigens in T-lymphocyte activation Nature, 259 (1976),pp. 273-281
    [4]
    Bartok, B., Firestein, G.S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis Immunol. Rev., 233 (2011),pp. 233-255
    [5]
    Bonizzi, G., Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity Trends Immunol., 25 (2004),pp. 280-288
    [6]
    Borra, M.T., Smith, B.C., Denu, J.M. Mechanism of human SIRT1 activation by resveratrol J. Biol. Chem., 280 (2005),pp. 17187-17195
    [7]
    Brunet, A., Sweeney, L.B., Sturgill, J.F. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase Science, 303 (2004),pp. 2011-2015
    [8]
    Byun, H.S., Song, J.K., Kim, Y.-R. et al. Caspase-8 has an essential role in resveratrol-induced apoptosis of rheumatoid fibroblast-like synoviocytes Rheumatology, 47 (2008),pp. 301-308
    [9]
    Calfon, M., Zeng, H., Urano, F. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA Nature, 415 (2002),pp. 92-96
    [10]
    Chen, L.-f., Mu, Y., Greene, W.C. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB EMBO J., 21 (2002),pp. 6539-6548
    [11]
    Chen, Y., Mohapatra, S., Mohapatra, S.S. et al. Cell. Immunol., 149 (1993),pp. 409-421
    [12]
    Cheng, H.L., Mostoslavsky, R., Saito, S. et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 10794-10799
    [13]
    Droin, N.M., Pinkoski, M.J., Dejardin, E. et al. Egr family members regulate nonlymphoid expression of Fas ligand, TRAIL, and tumor necrosis factor during immune responses Mol. Cell. Biol., 23 (2003),pp. 7638-7647
    [14]
    Dvir-Ginzberg, M., Gagarina, V., Lee, E.J. et al. Tumor necrosis factor α-mediated cleavage and inactivation of SirT1 in human osteoarthritic chondrocytes Arthritis Rheum., 63 (2011),pp. 2363-2373
    [15]
    Elmali, N., Baysal, O., Harma, A. et al. Effects of eesveratrol in inflammatory arthritis Inflammation, 30 (2007),pp. 1-6
    [16]
    Fang, D., Elly, C., Gao, B. et al. Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation Nat. Immunol., 3 (2002),pp. 281-287
    [17]
    Fang, D., Wang, H.Y., Fang, N. et al. Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells J. Biol. Chem., 276 (2001),pp. 4872-4878
    [18]
    Fiocco, U., Sfriso, P., Lunardi, F. et al. Molecular pathways involved in synovial cell inflammation and tumoral proliferation in diffuse pigmented villonodular synovitis Autoimmun. Rev., 9 (2011),pp. 780-784
    [19]
    Foletta, V., Segal, D., Cohen, D. Transcriptional regulation in the immune system: all roads lead to AP-1 J. Leukoc. Biol., 63 (1998),pp. 139-152
    [20]
    Fujisawa, K., Aono, H., Hasunuma, T. et al. Activation of transcription factor NF-κB in human synovial cells in response to tumor necrosis factor α Arthritis Rheum., 39 (1996),pp. 197-203
    [21]
    Gao, B., Kong, Q., Kemp, K. et al. Analysis of sirtuin 1 expression reveals a molecular explanation of IL-2-mediated reversal of T-cell tolerance Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 899-904
    [22]
    Gao, Z., Ye, J. Inhibition of transcriptional activity of c-JUN by SIRT1 Biochem. Biophys. Res. Commun., 376 (2008),pp. 793-796
    [23]
    Grabiec, A.M., Tak, P.P., Reedquist, K.A. Function of histone deacetylase inhibitors in inflammation Crit. Rev. Immunol., 31 (2011),pp. 233-263
    [24]
    Guerder, S., Picarella, D.E., Linsley, P.S. et al. Costimulator B7-1 confers antigen-presenting-cell function to parenchymal tissue and in conjunction with tumor necrosis factor α leads to autoimmunity in transgenic mice Proc. Natl. Acad. Sci. USA, 91 (1994),pp. 5138-5142
    [25]
    Harris, J.E., Bishop, K.D., Phillips, N.E. et al. J. Immunol., 173 (2004),pp. 7331-7338
    [26]
    Holoshitz, J., Matitiau, A., Cohen, I.R. Arthritis induced in rats by cloned T lymphocytes responsive to mycobacteria but not to collagen type II J. Clin. Invest., 73 (1984),pp. 211-215
    [27]
    Hoyne, G.F. Mechanisms that regulate peripheral immune responses to control organ-specific autoimmunity Clin. Dev. Immunol., 2011 (2011),p. 294968
    [28]
    Hu, P., Han, Z., Couvillon, A.D. et al. Autocrine tumor necrosis factor α links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-Regulation of TRAF2 expression Mol. Cell. Biol., 26 (2006),pp. 3071-3084
    [29]
    Hu, X., Chakravarty, S.D., Ivashkiv, L.B. Regulation of interferon and Toll-like receptor signaling during macrophage activation by opposing feedforward and feedback inhibition mechanisms Immunol. Rev., 226 (2008),pp. 41-56
    [30]
    Huang, Q.Q., Sobkoviak, R., Jockheck-Clark, A.R. et al. J. Immunol., 182 (2009),pp. 4965-4973
    [31]
    Huang, W., Shang, W.L., Wang, H.D. et al. Acta Pharmacol. Sin., 33 (2012),pp. 668-674
    [32]
    Imai, S., Armstrong, C.M., Kaeberlein, M. et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase Nature, 403 (2000),pp. 795-800
    [33]
    , Petro, T.M. Int. Immunopharmacol., 9 (2009),pp. 134-143
    [34]
    Jain, J., McCaffrey, P.G., Valge-Archer, V.E. et al. Nuclear factor of activated T cells contains Fos and Jun Nature, 356 (1992),pp. 801-804
    [35]
    Jain, J., Valge-Archer, V.E., Rao, A. Analysis of the AP-1 sites in the IL-2 promoter J. Immunol., 148 (1992),pp. 1240-1250
    [36]
    Jain, J., Valge-Archer, V.E., Sinskey, A.J. et al. The AP-1 site at -150 bp, but not the NF-κB site, is likely to represent the major target of protein kinase C in the interleukin 2 promoter J. Exp. Med., 175 (1992),pp. 853-862
    [37]
    Jung, S., Yaron, A., Alkalay, I. et al. Costimulation requirement for AP-1 and NF-κB transcription factor activation in T cells Ann. N. Y. Acad. Sci., 766 (1995),pp. 245-252
    [38]
    Kang, S.M., Beverly, B., Tran, A.C. et al. Transactivation by AP-1 is a molecular target of T cell clonal anergy Science, 257 (1992),pp. 1134-1138
    [39]
    Kok, S.H., Lin, L.D., Hou, K.L. et al. Simvastatin inhibits Cyr61 expression in rheumatoid arthritis synovial fibroblasts through the regulation of SIRT1/FoxO3a signaling Arthritis Rheum., 65 (2013),pp. 639-649
    [40]
    Kong, S., Kim, S.-J., Sandal, B. et al. The type III histone deacetylase Sirt1 protein suppresses p300-mediated histone H3 lysine 56 acetylation at Bclaf1 promoter to inhibit T cell activation J. Biol. Chem., 286 (2011),pp. 16967-16975
    [41]
    Lazarevic, V., Zullo, A.J., Schweitzer, M.N. et al. The gene encoding early growth response 2, a target of the transcription factor NFAT, is required for the development and maturation of natural killer T cells Nat. Immunol., 10 (2009),pp. 306-313
    [42]
    Lee, S.M., Yang, H., Tartar, D. et al. Prevention and treatment of diabetes with resveratrol in a non-obese mouse model of type 1 diabetes Diabetologia, 54 (2011),pp. 1136-1146
    [43]
    Lenschow, D.J., Zeng, Y., Thistlethwaite, J.R. et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg Science, 257 (1992),pp. 789-792
    [44]
    Lin, L., Hron, J.D., Peng, S.L. Regulation of NF-κB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a Immunity, 21 (2004),pp. 203-213
    [45]
    Lin, Z., Yang, H., Kong, Q. et al. USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development Mol. Cell, 46 (2012),pp. 484-494
    [46]
    Liszt, G., Ford, E., Kurtev, M. et al. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase J. Biol. Chem., 280 (2005),pp. 21313-21320
    [47]
    Macián, F., GarcIa-Cózar, F., Im, S.-H. et al. Transcriptional mechanisms underlying lymphocyte tolerance Cell, 109 (2002),pp. 719-731
    [48]
    Manna, S.K., Mukhopadhyay, A., Aggarwal, B.B. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-κB, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation J. Immunol., 164 (2000),pp. 6509-6519
    [49]
    Marok, R., Winyard, P.G., Coumbe, A. et al. Activation of the transcription factor nuclear factor-κB in human inflamed synovial tissue Arthritis Rheum., 39 (1996),pp. 583-591
    [50]
    Martinon, F., Chen, X., Lee, A.H. et al. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages Nat. Immunol., 11 (2010),pp. 411-418
    [51]
    McBurney, M.W., Yang, X., Jardine, K. et al. The absence of SIR2alpha protein has no effect on global gene silencing in mouse embryonic stem cells Mol. Cancer Res., 1 (2003),pp. 402-409
    [52]
    McInnes, I.B., Liew, F.Y., Gracie, J.A. Interleukin-18: a therapeutic target in rheumatoid arthritis? Arthritis Res. Ther., 7 (2005),pp. 38-41
    [53]
    Mondino, A., Whaley, C.D., DeSilva, D.R. et al. Defective transcription of the IL-2 gene is associated with impaired expression of c-Fos, FosB, and JunB in anergic T helper 1 cells J. Immunol., 157 (1996),pp. 2048-2057
    [54]
    Moon, M.H., Jeong, J.K., Lee, Y.J. et al. SIRT1, a class III histone deacetylase, regulates TNF-α-induced inflammation in human chondrocytes Osteoarthritis Cartilage, 21 (2013),pp. 470-480
    [55]
    Morand, E.F. New therapeutic target in inflammatory disease: macrophage migration inhibitory factor Intern. Med. J., 35 (2005),pp. 419-426
    [56]
    Motta, M.C., Divecha, N., Lemieux, M. et al. Mammalian SIRT1 represses forkhead transcription factors Cell, 116 (2004),pp. 551-563
    [57]
    Nakayama, H., Yaguchi, T., Yoshiya, S. et al. Resveratrol induces apoptosis MH7A human rheumatoid arthritis synovial cells in a sirtuin 1-dependent manner Rheumatol. Int., 32 (2012),pp. 151-157
    [58]
    Niederer, F., Ospelt, C., Brentano, F. et al. SIRT1 overexpression in the rheumatoid arthritis synovium contributes to proinflammatory cytokine production and apoptosis resistance Ann. Rheum. Dis., 70 (2011),pp. 1866-1873
    [59]
    Ofosu-Appiah, W.A., Warrington, R.J., Wilkins, J.A. Interleukin 2 responsive T cell clones from rheumatoid and normal subjects: proliferative responses to connective tissue elements Clin. Immunol. Immunopathol., 50 (1989),pp. 264-271
    [60]
    Ohori, M. ERK inhibitors as a potential new therapy for rheumatoid arthritis Drug News Perspect., 21 (2008),pp. 245-250
    [61]
    Oppenheimer, H., Gabay, O., Meir, H. et al. 75-kd sirtuin 1 blocks tumor necrosis factor α-mediated apoptosis in human osteoarthritic chondrocytes Arthritis Rheum., 64 (2012),pp. 718-728
    [62]
    Powell, J.D., Lerner, C.G., Ewoldt, G.R. et al. The -180 site of the IL-2 promoter is the target of CREB/CREM binding in T cell anergy J. Immunol., 163 (1999),pp. 6631-6639
    [63]
    Price, Nathan L., Gomes, Ana P., Ling, Alvin J.Y. et al. SIRT1 is required for AMPK activation and the beneficial effects of Resveratrol on mitochondrial function Cell Metab., 15 (2012),pp. 675-690
    [64]
    Recio, M.C., Andujar, I., Rios, J.L. Anti-inflammatory agents from plants: progress and potential Curr. Med. Chem., 19 (2012),pp. 2088-2103
    [65]
    Rengarajan, J., Mittelstadt, P.R., Mages, H.W. et al. Sequential involvement of NFAT and Egr transcription factors in FasL regulation Immunity, 12 (2000),pp. 293-300
    [66]
    Rincon, M., Flavell, R.A. AP-1 transcriptional activity requires both T-cell receptor-mediated and co-stimulatory signals in primary T lymphocytes EMBO J., 13 (1994),pp. 4370-4381
    [67]
    Roelofs, M.F., Boelens, W.C., Joosten, L.A. et al. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis J. Immunol., 176 (2006),pp. 7021-7027
    [68]
    Safford, M., Collins, S., Lutz, M.A. et al. Egr-2 and Egr-3 are negative regulators of T cell activation Nat. Immunol., 6 (2005),pp. 472-480
    [69]
    Sánchez-Fidalgo, S., Cárdeno, A., Villegas, I. et al. Dietary supplementation of resveratrol attenuates chronic colonic inflammation in mice Eur. J. Pharmacol., 633 (2010),pp. 78-84
    [70]
    Schug, T.T., Xu, Q., Gao, H. et al. Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress Mol. Cell. Biol., 30 (2010),pp. 4712-4721
    [71]
    Schwartz, R.H. T cell clonal anergy Curr. Opin. Immunol., 9 (1997),pp. 351-357
    [72]
    Schwartz, R.H. T cell anergy Annu. Rev. Immunol., 21 (2003),pp. 305-334
    [73]
    Sen, M. Wnt signalling in rheumatoid arthritis Rheumatology (Oxford), 44 (2005),pp. 708-713
    [74]
    Shakibaei, M., Buhrmann, C., Mobasheri, A. Resveratrol-mediated SIRT-1 interactions with p300 modulate receptor activator of NF-κB ligand (RANKL) activation of NF-κB signaling and inhibit osteoclastogenesis in bone-derived cells J. Biol. Chem., 286 (2011),pp. 11492-11505
    [75]
    Simmonds, R.E., Foxwell, B.M. Signalling, inflammation and arthritis: NF-κB and its relevance to arthritis and inflammation Rheumatology (Oxford), 47 (2008),pp. 584-590
    [76]
    Sloan-Lancaster, J., Evavold, B.D., Allen, P.M. Th2 cell clonal anergy as a consequence of partial activation J. Exp. Med., 180 (1994),pp. 1195-1205
    [77]
    Sloan-Lancaster, J., Shaw, A.S., Rothbard, J.B. et al. Partial T cell signaling: altered phospho-zeta and lack of zap70 recruitment in APL-induced T cell anergy Cell, 79 (1994),pp. 913-922
    [78]
    Solomon, J.M., Pasupuleti, R., Xu, L. et al. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage Mol. Cell. Biol., 26 (2006),pp. 28-38
    [79]
    Stahl, M., Dijkers, P.F., Kops, G.J. et al. The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2 J. Immunol., 168 (2002),pp. 5024-5031
    [80]
    Stamp, L.K., James, M.J., Cleland, L.G. Interleukin-17: the missing link between T-cell accumulation and effector cell actions in rheumatoid arthritis? Immunol. Cell Biol., 82 (2004),pp. 1-9
    [81]
    Stein, S., Schafer, N., Breitenstein, A. et al. Aging (Albany NY), 2 (2010),pp. 353-360
    [82]
    Sutmuller, R., Garritsen, A., Adema, G.J. Regulatory T cells and toll-like receptors: regulating the regulators Ann. Rheum. Dis., 66 (2007),pp. iii91-iii95
    [83]
    Tak, P.P. Chemokine inhibition in inflammatory arthritis Best Pract. Res. Clin. Rheumatol., 20 (2006),pp. 929-939
    [84]
    Thomas, R.M., Chunder, N., Chen, C. et al. J. Immunol., 179 (2007),pp. 7305-7315
    [85]
    Turka, L.A., Linsley, P.S., Lin, H. et al. Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 11102-11105
    [86]
    Ullman, K.S., Northrop, J.P., Admon, A. et al. Jun family members are controlled by a calcium-regulated, cyclosporin A-sensitive signaling pathway in activated T lymphocytes Genes Dev., 7 (1993),pp. 188-196
    [87]
    Venuprasad, K. Cbl-b and itch: key regulators of peripheral T-cell tolerance Cancer Res., 70 (2010),pp. 3009-3012
    [88]
    Villalba, J.M., Alcain, F.J. Sirtuin activators and inhibitors Biofactors, 38 (2012),pp. 349-359
    [89]
    Wang, F.M., Chen, Y.J., Ouyang, H.J. Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation Biochem. J., 433 (2010),pp. 245-252
    [90]
    Xuzhu, G., Komai-Koma, M., Leung, B.P. et al. Resveratrol modulates murine collagen-induced arthritis by inhibiting Th17 and B-cell function Ann. Rheum. Dis., 71 (2012),pp. 129-135
    [91]
    Yamamoto, Y., Gaynor, R.B. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer J. Clin. Invest., 107 (2001),pp. 135-142
    [92]
    Yang, S.-R., Wright, J., Bauter, M. et al. Am. J. Physiol. Lung Cell. Mol. Physiol., 292 (2007),pp. L567-L576
    [93]
    Yavuz, S., Elbir, Y., Tulunay, A. et al. Differential expression of toll-like receptor 6 on granulocytes and monocytes implicates the role of microorganisms in Behcet's disease etiopathogenesis Rheumatol. Int., 28 (2008),pp. 401-406
    [94]
    Yeung, F., Hoberg, J.E., Ramsey, C.S. et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase EMBO J., 23 (2004),pp. 2369-2380
    [95]
    Yuan, J., Minter-Dykhouse, K., Lou, Z. A c-Myc–SIRT1 feedback loop regulates cell growth and transformation J. Cell Biol., 185 (2009),pp. 203-211
    [96]
    Yuan, Z., Zhang, X., Sengupta, N. et al. SIRT1 regulates the function of the Nijmegen breakage syndrome protein Mol. Cell, 27 (2007),pp. 149-162
    [97]
    Zhang, J., Lee, S.M., Shannon, S. et al. The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice J. Clin. Invest., 119 (2009),pp. 3048-3058
    [98]
    Zhang, R., Chen, H.Z., Liu, J.J. et al. SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages J. Biol. Chem., 285 (2010),pp. 7097-7110
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (68) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return