[1] |
Barnes, D.E. Non-homologous end joining as a mechanism of DNA repair Curr. Biol., 11 (2001),pp. R455-R457
|
[2] |
Bedell, V.M., Wang, Y., Campbell, J.M. et al. Nature, 491 (2012),pp. 114-118
|
[3] |
Bibikova, M., Golic, M., Golic, K.G. et al. Genetics, 161 (2002),pp. 1169-1175
|
[4] |
Bibikova, M., Beumer, K., Trautman, J.K. et al. Enhancing gene targeting with designed zinc finger nucleases Science, 300 (2003),p. 764
|
[5] |
Boch, J., Bonas, U. Annu. Rev. Phytopathol., 48 (2010),pp. 419-436
|
[6] |
Boch, J., Scholze, H., Schornack, S. et al. Breaking the code of DNA binding specificity of TAL-type III effectors Science, 326 (2009),pp. 1509-1512
|
[7] |
Bogdanove, A.J., Voytas, D.F. TAL effectors: customizable proteins for DNA targeting Science, 333 (2011),pp. 1843-1846
|
[8] |
Bolotin, A., Quinquis, B., Sorokin, A. et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin Microbiology, 151 (2005),pp. 2551-2561
|
[9] |
Bonas, U., Stall, R.E., Staskawicz, B. Mol. Gen. Genet., 218 (1989),pp. 127-136
|
[10] |
Briggs, A.W., Rios, X., Chari, R. et al. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers Nucleic Acids Res., 40 (2012),p. e117
|
[11] |
Carlson, D.F., Tan, W., Lillico, S.G. et al. Efficient TALEN-mediated gene knockout in livestock Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 17382-17387
|
[12] |
Carroll, D. A CRISPR approach to gene targeting Mol. Ther., 20 (2012),pp. 1658-1660
|
[13] |
Cermak, T., Doyle, E.L., Christian, M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting Nucleic Acids Res., 39 (2011),p. e82
|
[14] |
Chen, F., Pruett-Miller, S.M., Huang, Y. et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases Nat. Methods, 8 (2011),pp. 753-755
|
[15] |
Chen, Y., Dui, W., Yu, Z. et al. Protein Cell, 1 (2010),pp. 478-490
|
[16] |
Cho, S.W., Kim, S., Kim, J.M. et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease Nat. Biotechnol., 31 (2013),pp. 230-232
|
[17] |
Choi, S.M., Kim, Y., Shim, J.S. et al. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells Hepatology (2013)
|
[18] |
Christian, M., Cermak, T., Doyle, E.L. et al. Targeting DNA double-strand breaks with TAL effector nucleases Genetics, 186 (2010),pp. 757-761
|
[19] |
Cong, L., Zhou, R., Kuo, Y.C. et al. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains Nat. Commun., 3 (2012),p. 968
|
[20] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[21] |
Cradick, T.J., Ambrosini, G., Iseli, C. et al. ZFN-site searches genomes for zinc finger nuclease target sites and off-target sites BMC Bioinformatics, 12 (2011),p. 152
|
[22] |
Deng, D., Yan, C., Pan, X. et al. Structural basis for sequence-specific recognition of DNA by TAL effectors Science, 335 (2012),pp. 720-723
|
[23] |
Ding, Q., Lee, Y.K., Schaefer, E.A. et al. A TALEN genome-editing system for generating human stem cell-based disease models Cell Stem Cell, 12 (2013),pp. 238-251
|
[24] |
Du, G., Liu, X., Chen, X. et al. Mol. Biol. Cell, 21 (2010),pp. 2128-2137
|
[25] |
Dui, W., Lu, W., Ma, J. et al. J. Genet. Genomics, 39 (2012),pp. 397-413
|
[26] |
Eeken, J.C., Sobels, F.H. Mutat. Res., 110 (1983),pp. 297-310
|
[27] |
Esvelt, K.M., Wang, H.H. Genome-scale engineering for systems and synthetic biology Mol. Syst. Biol., 9 (2013),p. 641
|
[28] |
Garg, A., Lohmueller, J.J., Silver, P.A. et al. Engineering synthetic TAL effectors with orthogonal target sites Nucleic Acids Res., 40 (2012),pp. 7584-7595
|
[29] |
Garneau, J.E., Dupuis, M.E., Villion, M. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA Nature, 468 (2010),pp. 67-71
|
[30] |
Gasiunas, G., Barrangou, R., Horvath, P. et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria Proc. Natl. Acad. Sci. USA, 109 (2012),pp. E2579-E2586
|
[31] |
Golic, K.G., Golic, M.M. Genetics, 144 (1996),pp. 1693-1711
|
[32] |
Groth, A.C., Fish, M., Nusse, R. et al. Genetics, 166 (2004),pp. 1775-1782
|
[33] |
Hale, C.R., Zhao, P., Olson, S. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex Cell, 139 (2009),pp. 945-956
|
[34] |
Hockemeyer, D., Wang, H., Kiani, S. et al. Genetic engineering of human pluripotent cells using TALE nucleases Nat. Biotechnol., 29 (2011),pp. 731-734
|
[35] |
Horvath, P., Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea Science, 327 (2010),pp. 167-170
|
[36] |
Huang, H., Jiao, R. Roles of chromatin assembly factor 1 in the epigenetic control of chromatin plasticity Sci. China Life. Sci., 55 (2012),pp. 15-19
|
[37] |
Huang, H., Yu, Z., Zhang, S. et al. J. Cell Sci., 123 (2010),pp. 2853-2861
|
[38] |
Huang, H., Du, G., Chen, H. et al. Development, 138 (2011),pp. 2477-2485
|
[39] |
Huang, P., Xiao, A., Zhou, M. et al. Heritable gene targeting in zebrafish using customized TALENs Nat. Biotechnol., 29 (2011),pp. 699-700
|
[40] |
Huang, P., Zhu, Z., Lin, S. et al. Reverse genetic approaches in zebrafish J. Genet. Genomics, 39 (2012),pp. 421-433
|
[41] |
Hwang, W.Y., Fu, Y., Reyon, D. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 227-229
|
[42] |
Ishino, Y., Shinagawa, H., Makino, K. et al. J. Bacteriol., 169 (1987),pp. 5429-5433
|
[43] |
Jiang, W., Bikard, D., Cox, D. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems Nat. Biotechnol., 31 (2013),pp. 233-239
|
[44] |
Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
|
[45] |
Jinek, M., East, A., Cheng, A. et al. RNA-programmed genome editing in human cells eLife, 2 (2013),p. e00471
|
[46] |
Jore, M.M., Lundgren, M., van Duijn, E. et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade Nat. Struct. Mol. Biol., 18 (2011),pp. 529-536
|
[47] |
Karginov, F.V., Hannon, G.J. The CRISPR system: small RNA-guided defense in bacteria and archaea Mol. Cell, 37 (2010),pp. 7-19
|
[48] |
Kay, S., Hahn, S., Marois, E. et al. A bacterial effector acts as a plant transcription factor and induces a cell size regulator Science, 318 (2007),pp. 648-651
|
[49] |
Kim, Y.G., Cha, J., Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 1156-1160
|
[50] |
Lei, Y., Guo, X., Liu, Y. et al. Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 17484-17489
|
[51] |
Li, T., Liu, B., Spalding, M.H. et al. High-efficiency TALEN-based gene editing produces disease-resistant rice Nat. Biotechnol., 30 (2012),pp. 390-392
|
[52] |
Li, T., Huang, S., Zhao, X. et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes Nucleic Acids Res., 39 (2011),pp. 6315-6325
|
[53] |
Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway Annu. Rev. Biochem., 79 (2010),pp. 181-211
|
[54] |
Liu, J., Wu, Q., He, D. et al. J. Genet. Genomics, 38 (2011),pp. 225-234
|
[55] |
Liu, J., Li, C., Yu, Z. et al. J. Genet. Genomics, 39 (2012),pp. 209-215
|
[56] |
Maeder, M.L., Linder, S.J., Reyon, D. et al. Robust, synergistic regulation of human gene expression using TALE activators Nat. Methods, 10 (2013),pp. 243-245
|
[57] |
Mak, A.N., Bradley, P., Cernadas, R.A. et al. The crystal structure of TAL effector PthXo1 bound to its DNA target Science, 335 (2012),pp. 716-719
|
[58] |
Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
|
[59] |
Marx, J.L. Science, 218 (1982),pp. 364-365
|
[60] |
Melton, D.W. Gene targeting in the mouse Bioessays, 16 (1994),pp. 633-638
|
[61] |
Miller, J.C., Tan, S., Qiao, G. et al. A TALE nuclease architecture for efficient genome editing Nat. Biotechnol., 29 (2011),pp. 143-148
|
[62] |
Morbitzer, R., Romer, P., Boch, J. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 21617-21622
|
[63] |
Moscou, M.J., Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors Science, 326 (2009),p. 1501
|
[64] |
Ochiai, H., Sakamoto, N., Fujita, K. et al. Zinc-finger nuclease-mediated targeted insertion of reporter genes for quantitative imaging of gene expression in sea urchin embryos Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 10915-10920
|
[65] |
Qi, L.S., Larson, M.H., Gilbert, L.A. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell, 152 (2013),pp. 1173-1183
|
[66] |
Reyon, D., Khayter, C., Regan, M.R. et al. Engineering designer transcription activator-like effector nucleases (TALENs) by REAL or REAL-Fast assembly Curr. Protoc. Mol. Biol. (2012)
|
[67] |
Reyon, D., Tsai, S.Q., Khayter, C. et al. FLASH assembly of TALENs for high-throughput genome editing Nat. Biotechnol., 30 (2012),pp. 460-465
|
[68] |
Romer, P., Hahn, S., Jordan, T. et al. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene Science, 318 (2007),pp. 645-648
|
[69] |
Rubin, G.M., Spradling, A.C. Science, 218 (1982),pp. 348-353
|
[70] |
Sanjana, N.E., Cong, L., Zhou, Y. et al. A transcription activator-like effector toolbox for genome engineering Nat. Protoc., 7 (2012),pp. 171-192
|
[71] |
Shen, Y., Huang, P., Zhang, B. A protocol for TALEN construction and gene targeting in zebrafish Hereditas (Beijing), 35 (2013),pp. 533-544
|
[72] |
Shen, Y., Xiao, A., Huang, P. et al. TALE nuclease engineering and targeted genome modification Hereditas (Beijing), 35 (2013),pp. 395-409
|
[73] |
Solnica-Krezel, L., Schier, A.F., Driever, W. Efficient recovery of ENU-induced mutations from the zebrafish germline Genetics, 136 (1994),pp. 1401-1420
|
[74] |
Song, Y., He, F., Xie, G. et al. Dev. Biol., 311 (2007),pp. 213-222
|
[75] |
Sorek, R., Kunin, V., Hugenholtz, P. CRISPR – a widespread system that provides acquired resistance against phages in bacteria and archaea Nat. Rev. Microbiol., 6 (2008),pp. 181-186
|
[76] |
Streubel, J., Blucher, C., Landgraf, A. et al. TAL effector RVD specificities and efficiencies Nat. Biotechnol., 30 (2012),pp. 593-595
|
[77] |
Sun, N., Liang, J., Abil, Z. et al. Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease Mol. Biosyst., 8 (2012),pp. 1255-1263
|
[78] |
Sung, Y.H., Baek, I.J., Kim, D.H. et al. Knockout mice created by TALEN-mediated gene targeting Nat. Biotechnol., 31 (2013),pp. 23-24
|
[79] |
Tesson, L., Usal, C., Menoret, S. et al. Knockout rats generated by embryo microinjection of TALENs Nat. Biotechnol., 29 (2011),pp. 695-696
|
[80] |
Thomas, K.R., Capecchi, M.R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells Cell, 51 (1987),pp. 503-512
|
[81] |
Tong, C., Huang, G., Ashton, C. et al. Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs J. Genet. Genomics, 39 (2012),pp. 275-280
|
[82] |
Urnov, F.D., Rebar, E.J., Holmes, M.C. et al. Genome editing with engineered zinc finger nucleases Nat. Rev. Genet., 11 (2010),pp. 636-646
|
[83] |
van den Bosch, M., Lohman, P.H., Pastink, A. DNA double-strand break repair by homologous recombination Biol. Chem., 383 (2002),pp. 873-892
|
[84] |
Weber, E., Gruetzner, R., Werner, S. et al. Assembly of designer TAL effectors by Golden Gate cloning PLoS ONE, 6 (2011),p. e19722
|
[85] |
Wood, A.J., Lo, T.W., Zeitler, B. et al. Targeted genome editing across species using ZFNs and TALENs Science, 333 (2011),p. 307
|
[86] |
Xie, G., Zhang, H., Du, G. et al. PLoS ONE, 7 (2012),p. e36362
|
[87] |
Xu, T., Rubin, G.M. Development, 117 (1993),pp. 1223-1237
|
[88] |
Xu, Y., Lei, Z., Huang, H. et al. PLoS ONE, 4 (2009),p. e6107
|
[89] |
Yu, Z.S., Jiao, R. Front. Biol., 5 (2010),pp. 238-245
|
[90] |
Zhang, Y., Zhang, F., Li, X. et al. Transcription activator-like effector nucleases enable efficient plant genome engineering Plant Physiol., 161 (2013),pp. 20-27
|
[91] |
Zu, Y., Tong, X., Wang, Z. et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish Nat. Methods (2013)
|