[1] |
Beck, S. Taking the measure of the methylome Nat. Biotechnol., 28 (2010),pp. 1026-1028
|
[2] |
Benjamini, Y., Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing J. R. Stat. Soc. Ser. B, 57 (1995),pp. 289-300
|
[3] |
Bock, C. Analysing and interpreting DNA methylation data Nat. Rev. Genet., 13 (2012),pp. 705-719
|
[4] |
Booth, M.J., Branco, M.R., Ficz, G. et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution Science, 336 (2012),pp. 934-937
|
[5] |
Calarco, J.P., Borges, F., Donoghue, M.T.A. et al. Cell, 151 (2012),pp. 194-205
|
[6] |
Cao, X., Aufsatz, W., Zilberman, D. et al. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation Curr. Biol., 13 (2003),pp. 2212-2217
|
[7] |
Chen, P.-Y., Cokus, S.J., Pellegrini, M. BS Seeker: precise mapping for bisulfite sequencing BMC Bioinformatics, 11 (2010),pp. 203-208
|
[8] |
Chen, Z., Liu, Q., Nadarajah, S. A new statistical approach to detecting differentially methylated loci for case control Illumina array methylation data Bioinformatics, 28 (2012),pp. 1109-1113
|
[9] |
Cokus, S.J., Feng, S., Zhang, X. et al. Nature, 452 (2008),pp. 215-219
|
[10] |
Coleman-Derr, D., Zilberman, D. DNA methylation, H2A.Z, and the regulation of constitutive expression Cold Spring Harb. Symp. Quant. Biol (2012)
|
[11] |
Cox, M.P., Peterson, D.A., Biggs, P.J. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data BMC Bioinformatics, 11 (2010),pp. 485-490
|
[12] |
Dinh, H.Q., Dubin, M., Sedlazeck, F.J. et al. PLoS ONE, 7 (2012),p. e41528
|
[13] |
Dowen, R.H., Pelizzola, M., Schmitz, R.J. et al. Widespread dynamic DNA methylation in response to biotic stress Proc. Natl. Acad. Sci. USA, 109 (2012),pp. E2183-E2191
|
[14] |
Du, J., Zhong, X., Bernatavichute, Y.V. et al. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants Cell, 151 (2012),pp. 167-180
|
[15] |
Dudoit, S., van der Laan, M.J.
|
[16] |
Finnegan, E.J., Dennis, E.S. Nucleic Acids Res., 21 (1993),pp. 2383-2388
|
[17] |
Finnegan, E.J., Peacock, W.J., Dennis, E.S. Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 8449-8454
|
[18] |
Flusberg, B.A., Webster, D.R., Lee, J.H. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing Nat. Methods, 7 (2010),pp. 461-465
|
[19] |
Fojtová, M., Kovařı́k, A., Matyášek, R. Cytosine methylation of plastid genome in higher plants. Fact or artefact? Plant Sci., 160 (2001),pp. 585-593
|
[20] |
Harris, R.A., Wang, T., Coarfa, C. et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications Nat. Biotechnol., 28 (2010),pp. 1097-1105
|
[21] |
He, X.-J., Chen, T., Zhu, J.-K. Regulation and function of DNA methylation in plants and animals Cell Res., 21 (2011),pp. 442-465
|
[22] |
Hsieh, T.F., Ibarra, C.A., Silva, P. et al. Science, 324 (2009),pp. 1451-1454
|
[23] |
Huang, Y., Pastor, W.A., Shen, Y. et al. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing PLoS ONE, 5 (2010),p. e8888
|
[24] |
Jacinto, F.V., Ballestar, E., Esteller, M. Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome BioTechniques, 44 (2008),pp. 35-43
|
[25] |
Jackson, J.P., Lindroth, A.M., Cao, X. et al. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase Nature, 416 (2002),pp. 556-560
|
[26] |
Jaffe, A.E., Murakami, P., Lee, H. et al. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies Inter. J. Epidemiol., 41 (2012),pp. 200-209
|
[27] |
Jeddeloh, J.A., Stokes, T.L., Richards, E.J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein Nat. Genet., 22 (1999),pp. 94-97
|
[28] |
Jones, L., Ratcliff, F., Baulcombe, D.C. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance Curr. Biol., 11 (2001),pp. 747-757
|
[29] |
Jones, P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond Nat. Rev. Genet., 13 (2012),pp. 484-492
|
[30] |
Kent, W.J., Sugnet, C.W., Furey, T.S. et al. The human genome browser at UCSC Genome Res., 12 (2002),pp. 996-1006
|
[31] |
Krueger, F., Andrews, S.R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications Bioinformatics, 27 (2011),pp. 1571-1572
|
[32] |
Krueger, F., Kreck, B., Franke, A. et al. DNA methylome analysis using short bisulfite sequencing data Nat. Methods, 9 (2012),pp. 145-151
|
[33] |
Krzywinski, M., Schein, J., Birol, I. et al. Circos: an information aesthetic for comparative genomics Genome Res., 19 (2009),pp. 1639-1645
|
[34] |
Laird, P.W. Principles and challenges of genome-wide DNA methylation analysis Nat. Rev. Genet., 11 (2010),pp. 191-203
|
[35] |
Langmead, B., Trapnell, C., Pop, M. et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome Genome Biol., 10 (2009),p. R25
|
[36] |
Law, J.A., Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals Nat. Rev. Genet., 11 (2010),pp. 204-220
|
[37] |
Lindroth, A.M., Cao, X., Jackson, J.P. et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation Science, 292 (2001),pp. 2077-2080
|
[38] |
Lister, R., Ecker, J.R. Finding the fifth base: genome-wide sequencing of cytosine methylation Genome Res., 19 (2009),pp. 959-966
|
[39] |
Lister, R., O'Malley, R.C., Tonti-Filippini, J. et al. Cell, 133 (2008),pp. 523-536
|
[40] |
Meyers, B.C., Lee, D.K., Vu, T.H. et al. Plant Physiol., 135 (2004),pp. 801-813
|
[41] |
Nakano, M., Nobuta, K., Vemaraju, K. et al. Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA Nucleic Acids Res., 34 (2006),pp. D731-D735
|
[42] |
Nicol, J.W., Helt, G.A., Blanchard, S.G. et al. The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets Bioinformatics, 25 (2009),pp. 2730-2731
|
[43] |
Noble, W.S. How does multiple testing correction work? Nat. Biotechnol., 27 (2009),pp. 1135-1137
|
[44] |
Nouzova, M., Holtan, N., Oshiro, M.M. et al. Epigenomic changes during leukemia cell differentiation: analysis of histone acetylation and cytosine methylation using CpG island microarrays J. Pharmacol. Exp. Ther., 311 (2004),pp. 968-981
|
[45] |
Okano, M., Bell, D.W., Haber, D.A. et al. Cell, 99 (1999),pp. 247-257
|
[46] |
Otto, C., Stadler, P.F., Hoffmann, S. Fast and sensitive mapping of bisulfite-treated sequencing data Bioinformatics, 28 (2012),pp. 1698-1704
|
[47] |
Poage, G.M., Butler, R.A., Houseman, E.A. et al. Identification of an epigenetic profile classifier that is associated with survival in head and neck cancer Cancer Res., 72 (2012),pp. 2728-2737
|
[48] |
Robinson, J.T., Thorvaldsdóttir, H., Winckler, W. et al. Integrative genomics viewer Nat. Biotechnol., 29 (2011),pp. 24-26
|
[49] |
Ronemus, M.J., Galbiati, M., Ticknor, C. et al. Science, 273 (1996),pp. 654-657
|
[50] |
Ruike, Y., Imanaka, Y., Sato, F. et al. Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing BMC Genomics, 11 (2010),p. 137
|
[51] |
Schmieder, R., Edwards, R. Quality control and preprocessing of metagenomic datasets Bioinformatics, 27 (2011),pp. 863-864
|
[52] |
Schumacher, A., Kapranov, P., Kaminsky, Z. et al. Microarray-based DNA methylation profiling: technology and applications Nucleic Acids Res., 34 (2006),pp. 528-542
|
[53] |
Srinivasan, P.R., Borek, E. Enzymatic alteration of nucleic acid structure Science, 145 (1964),pp. 548-553
|
[54] |
Storey, J.D., Tibshirani, R. Statistical significance for genomewide studies Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 9440-9445
|
[55] |
Stroud, H., Greenberg, M.V.C., Feng, S. et al. Cell, 152 (2013),pp. 352-364
|
[56] |
Taiwo, O., Wilson, G.A., Morris, T. et al. Methylome analysis using MeDIP-seq with low DNA concentrations Nat. Protoc., 7 (2012),pp. 617-636
|
[57] |
Thorvaldsdottir, H., Robinson, J.T., Mesirov, J.P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration Brief. Bioinform., 14 (2013),pp. 178-192
|
[58] |
Tompa, R., McCallum, C.M., Delrow, J. et al. Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE3 Curr. Biol., 12 (2002),pp. 65-68
|
[59] |
Tran, R.K., Henikoff, J.G., Zilberman, D. et al. Curr. Biol., 15 (2005),pp. 154-159
|
[60] |
Vining, K.J., Pomraning, K.R., Wilhelm, L.J. et al. BMC Genomics, 13 (2012),p. 27
|
[61] |
Vongs, A., Kakutani, T., Martienssen, R.A. et al. Science, 260 (1993),pp. 1926-1928
|
[62] |
Wang, D., Yan, L., Hu, Q. et al. IMA: an R package for high-throughput analysis of Illumina's 450K Infinium methylation data Bioinformatics, 28 (2012),pp. 729-730
|
[63] |
Wang, S. Method to detect differentially methylated loci with case-control designs using Illumina arrays Genet. Epidemiol., 35 (2011),pp. 686-694
|
[64] |
Warnecke, P.M., Stirzaker, C., Song, J. et al. Identification and resolution of artifacts in bisulfite sequencing Methods, 27 (2002),pp. 101-107
|
[65] |
Wierzbicki, A.T., Cocklin, R., Mayampurath, A. et al. Genes Dev., 26 (2012),pp. 1825-1836
|
[66] |
Xi, Y., Li, W. BSMAP: whole genome bisulfite sequence MAPping program BMC Bioinformatics, 10 (2009),p. 232
|
[67] |
Yan, P.S., Potter, D., Deatherage, D.E. et al. Differential methylation hybridization: profiling DNA methylation with a high-density CpG island microarray Methods Mol. Biol., 507 (2009),pp. 89-106
|
[68] |
Zhang, Y., Liu, H., Lv, J. et al. QDMR: a quantitative method for identification of differentially methylated regions by entropy Nucleic Acids Res., 39 (2011)
|
[69] |
Zhuang, J., Widschwendter, M., Teschendorff, A.E. A comparison of feature selection and classification methods in DNA methylation studies using the Illumina Infinium platform BMC Bioinformatics, 13 (2012),p. 59
|