5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 6
Jun.  2013
Turn off MathJax
Article Contents

TALENs: Customizable Molecular DNA Scissors for Genome Engineering of Plants

doi: 10.1016/j.jgg.2013.03.009
More Information
  • Corresponding author: E-mail address: cxgao@genetics.ac.cn (Caixia Gao)
  • Received Date: 2013-02-18
  • Accepted Date: 2013-03-18
  • Rev Recd Date: 2013-03-18
  • Available Online: 2013-03-26
  • Publish Date: 2013-06-20
  • Precise genome modification with engineered nucleases is a powerful tool for studying basic biology and applied biotechnology. Transcription activator-like effector nucleases (TALENs), consisting of an engineered specific (TALE) DNA binding domain and a Fok I cleavage domain, are newly developed versatile reagents for genome engineering in different organisms. Because of the simplicity of the DNA recognition code and their modular assembly, TALENs can act as customizable molecular DNA scissors inducing double-strand breaks (DSBs) at given genomic location. Thus, they provide a valuable approach to targeted genome modifications such as mutations, insertions, replacements or chromosome rearrangements. In this article, we review the development of TALENs, and summarize the principles and tools for TALEN-mediated gene targeting in plant cells, as well as current and potential strategies for use in plant research and crop improvement.
  • loading
  • [1]
    2011. Method of the year 2011. Nat. Methods 9, 1.
    [2]
    2012. The runners-up. Science 338, 1525–1532.
    [3]
    Baker, M. Gene-editing nucleases Nat. Methods, 9 (2012),pp. 23-26
    [4]
    Bedell, V.M. Nature (2012)
    [5]
    Bibikova, M., Golic, M., Golic, K.G. et al. Genetics, 161 (2002),pp. 1169-1175
    [6]
    Boch, J., Bonas, U. Annu. Rev. Phytopathol., 48 (2010),pp. 419-436
    [7]
    Boch, J., Scholze, H., Schornack, S. et al. Breaking the code of DNA binding specificity of TAL-type III effectors Science, 326 (2009),pp. 1509-1512
    [8]
    Bogdanove, A.J., Schornack, S., Lahaye, T. TAL effectors: finding plant genes for disease and defense Curr. Opin. Plant. Biol., 13 (2010),pp. 394-401
    [9]
    Bogdanove, A.J., Voytas, D.F. TAL effectors: customizable proteins for DNA targeting Science, 333 (2011),pp. 1843-1846
    [10]
    Briggs, A.W., Rios, X., Chari, R. et al. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers Nucleic Acids Res., 40 (2012),p. e117
    [11]
    Cade, L., Reyon, D., Hwang, W.Y. et al. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs Nucleic Acids Res., 40 (2012),pp. 8001-8010
    [12]
    Capecchi, M.R. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century Nat. Rev. Genet., 6 (2005),pp. 507-512
    [13]
    Carlson, D.F., Tan, W., Lillico, S.G. et al. Efficient TALEN-mediated gene knockout in livestock Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 17382-17387
    [14]
    Carroll, D. Genome engineering with zinc-finger nucleases Genetics, 188 (2011),pp. 773-782
    [15]
    Cermak, T., Doyle, E.L., Christian, M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting Nucleic Acids Res., 39 (2011),p. e82
    [16]
    Christian, M., Cermak, T., Doyle, E.L. et al. Targeting DNA double-strand breaks with TAL effector nucleases Genetics, 186 (2010),pp. 757-761
    [17]
    Curtin, S.J., Voytas, D.F., Stupar, R.M. Genome engineering of crops with designer nucleases Plant Genome J., 5 (2012),pp. 42-50
    [18]
    Curtin, S.J., Zhang, F., Sander, J.D. et al. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases Plant Physiol., 156 (2011),pp. 466-473
    [19]
    Dahlem, T.J., Hoshijima, K., Jurynec, M.J. et al. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome PLoS Genet., 8 (2012),p. e1002861
    [20]
    de Pater, S., Neuteboom, L.W., Pinas, J.E. et al. Plant Biotechnol. J., 7 (2009),pp. 821-835
    [21]
    DeFrancesco, L. Move over ZFNs Nat. Biotechnol., 29 (2011),pp. 681-684
    [22]
    Deng, D., Yan, C., Pan, X. et al. Structural basis for sequence-specific recognition of DNA by TAL effectors Science, 335 (2012),pp. 720-723
    [23]
    Deng, D., Yin, P., Yan, C. et al. Recognition of methylated DNA by TAL effectors Cell Res., 22 (2012),pp. 1502-1504
    [24]
    Doyle, E.L., Booher, N.J., Standage, D.S. et al. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction Nucleic Acids Res., 40 (2012),pp. W117-W122
    [25]
    Halfter, U., Morris, P.C., Willmitzer, L. Mol. Gen. Genet., 231 (1992),pp. 186-193
    [26]
    Hockemeyer, D., Wang, H., Kiani, S. et al. Genetic engineering of human pluripotent cells using TALE nucleases Nat. Biotechnol., 29 (2011),pp. 731-734
    [27]
    Huang, P., Xiao, A., Zhou, M. et al. Heritable gene targeting in zebrafish using customized TALENs Nat. Biotechnol., 29 (2011),pp. 699-700
    [28]
    Joung, J.K., Sander, J.D. TALENs: a widely applicable technology for targeted genome editing Nat. Rev. Mol. Cell Biol., 14 (2012),pp. 49-55
    [29]
    Kuzma, J., Kokotovich, A. Renegotiating GM crop regulation EMBO Rep., 12 (2011),pp. 883-888
    [30]
    Lei, Y. Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 17484-17489
    [31]
    Li, L., Piatek, M.J., Atef, A. et al. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification Plant Mol. Biol., 78 (2012),pp. 407-416
    [32]
    Li, T., Huang, S., Zhao, X. et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes Nucleic Acids Res., 39 (2011),pp. 6315-6325
    [33]
    Li, T., Liu, B., Spalding, M.H. et al. High-efficiency TALEN-based gene editing produces disease-resistant rice Nat. Biotechnol., 30 (2012),pp. 390-392
    [34]
    Liu, J., Li, C., Yu, Z. et al. J. Genet. Genomics, 39 (2012),pp. 209-215
    [35]
    Ma, S., Zhang, S., Wang, F. et al. Highly efficient and specific genome editing in silkworm using custom TALENs PLoS ONE, 7 (2012),p. e45035
    [36]
    Mahfouz, M.M., Li, L. TALE nucleases and next generation GM crops GM Crops, 2 (2011),pp. 99-103
    [37]
    Mahfouz, M.M., Li, L., Shamimuzzaman, M. et al. Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 2623-2628
    [38]
    Mak, A.N., Bradley, P., Cernadas, R.A. et al. The crystal structure of TAL effector PthXo1 bound to its DNA target Science, 335 (2012),pp. 716-719
    [39]
    Marx, V. Genome-editing tools storm ahead Nat. Methods, 9 (2012),pp. 1055-1059
    [40]
    Miller, J.C., Tan, S., Qiao, G. et al. A TALE nuclease architecture for efficient genome editing Nat. Biotechnol., 29 (2011),pp. 143-148
    [41]
    Moore, F.E. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs) PLoS ONE, 7 (2012),p. e37877
    [42]
    Moscou, M.J., Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors Science, 326 (2009),p. 1501
    [43]
    Mussolino, C., Cathomen, T. TALE nucleases: tailored genome engineering made easy Curr. Opin. Biotechnol., 23 (2012),pp. 644-650
    [44]
    Osakabe, K., Osakabe, Y., Toki, S. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 12034-12039
    [45]
    Paszkowski, J., Baur, M., Bogucki, A. et al. Gene targeting in plants EMBO J., 7 (1988),pp. 4021-4026
    [46]
    Pennisi, E. Sowing the seeds for the ideal crop Science, 327 (2010),pp. 802-803
    [47]
    Pennisi, E. The tale of the TALEs Science, 338 (2012),pp. 1408-1411
    [48]
    Remy, S., Tesson, L., Menoret, S. et al. Zinc-finger nucleases: a powerful tool for genetic engineering of animals Transgenic Res., 19 (2010),pp. 363-371
    [49]
    Reyon, D., Khayter, C., Regan, M.R., Joung, J.K., Sander, J.D., 2012a. Engineering designer transcription activator-like effector nucleases (TALENs) by REAL or REAL-Fast assembly. Curr. Protoc. Mol. Biol. Chapter 12, Unit 12 15. http://dx.doi.org/10.1002/0471142727.mb1215s100.
    [50]
    Reyon, D., Tsai, S.Q., Khayter, C. et al. FLASH assembly of TALENs for high-throughput genome editing Nat. Biotechnol., 30 (2012),pp. 460-465
    [51]
    Rouet, P., Smih, F., Jasin, M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells Proc. Natl. Acad. Sci. USA, 91 (1994),pp. 6064-6068
    [52]
    Sander, J.D., Cade, L., Khayter, C. et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs Nat. Biotechnol., 29 (2011),pp. 697-698
    [53]
    Scherer, S., Davis, R.W. Proc. Natl. Acad. Sci. USA, 76 (1979),pp. 4951-4955
    [54]
    Schmid-Burgk, J.L., Schmidt, T., Kaiser, V. et al. A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes Nat. Biotechnol., 31 (2012),pp. 76-81
    [55]
    Shan, Q., Wang, Y., Chen, K. et al. Mol. Plant (2013)
    [56]
    Shukla, V.K., Doyon, Y., Miller, J.C. et al. Nature, 459 (2009),pp. 437-441
    [57]
    Streubel, J., Blucher, C., Landgraf, A. et al. TAL effector RVD specificities and efficiencies Nat. Biotechnol., 30 (2012),pp. 593-595
    [58]
    Tesson, L. Knockout rats generated by embryo microinjection of TALENs Nat. Biotechnol., 29 (2011),pp. 695-696
    [59]
    Tong, C., Huang, G., Ashton, C. et al. Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs J. Genet. Genomics, 39 (2012),pp. 275-280
    [60]
    Townsend, J.A., Wright, D.A., Winfrey, R.J. et al. High-frequency modification of plant genes using engineered zinc-finger nucleases Nature, 459 (2009),pp. 442-445
    [61]
    Tzfira, T., Weinthal, D., Marton, I. et al. Genome modifications in plant cells by custom-made restriction enzymes Plant Biotechnol. J., 10 (2012),pp. 373-389
    [62]
    Urnov, F.D., Miller, J.C., Lee, Y.L. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases Nature, 435 (2005),pp. 646-651
    [63]
    Urnov, F.D., Rebar, E.J., Holmes, M.C. et al. Genome editing with engineered zinc finger nucleases Nat. Rev. Genet., 11 (2010),pp. 636-646
    [64]
    Valton, J., Dupuy, A., Daboussi, F. et al. Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation J. Biol. Chem., 287 (2012),pp. 38427-38432
    [65]
    Wang, Z. An integrated Chip for the high-throughput synthesis of transcription activator-like effectors Angew. Chem. Int. Ed. Engl., 51 (2012),pp. 8505-8508
    [66]
    Weber, E., Gruetzner, R., Werner, S. et al. Assembly of designer TAL effectors by Golden Gate cloning PLoS ONE, 6 (2011),p. e19722
    [67]
    Wood, A.J. Targeted genome editing across species using ZFNs and TALENs Science, 333 (2011),p. 307
    [68]
    Wright, D.A., Townsend, J.A., , Irwin, P.A. et al. High-frequency homologous recombination in plants mediated by zinc-finger nucleases Plant J., 44 (2005),pp. 693-705
    [69]
    Xiao, A., Wu, Y., Yang, Z. et al. EENdb: a database and knowledge base of ZFNs and TALENs for endonuclease engineering Nucleic Acids Res., 41 (2013),pp. D415-D422
    [70]
    Zhang, F., Cong, L., Lodato, S. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription Nat. Biotechnol., 29 (2011),pp. 149-153
    [71]
    Zhang, F., Maeder, M.L., Unger-Wallace, E. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 12028-12033
    [72]
    Zhang, Y., Zhang, F., Li, X. et al. Transcription activator-like effector nucleases enable efficient plant genome engineering Plant Physiol., 161 (2013),pp. 20-27
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (98) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return