5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 4
Apr.  2013
Turn off MathJax
Article Contents

The Function of MicroRNAs in Renal Development and Pathophysiology

doi: 10.1016/j.jgg.2013.03.002
More Information
  • Corresponding author: E-mail address: lssqlh@mail.sysu.edu.cn (Lianghu Qu)
  • Received Date: 2012-10-21
  • Accepted Date: 2013-03-01
  • Rev Recd Date: 2013-02-28
  • Available Online: 2013-03-14
  • Publish Date: 2013-04-20
  • MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that modulate diverse biological processes predominantly by translation inhibition or induction of mRNA degradation. They are important regulatory elements involved in renal physiology and pathology. Dysregulation of miRNAs disrupts early kidney development, renal progenitor cell differentiation and the maintenance of mature nephrons. miRNAs are also reported to participate in various renal diseases, including chronic kidney disease, acute kidney injury, allograft acute rejection and renal cell carcinoma. Differentially regulated miRNAs may represent innovative biomarkers for diagnosis and prognosis. Therefore, determining the roles of miRNAs in different types of renal diseases will help to clarify the pathogenesis and facilitate the development of novel therapies.
  • loading
  • [1]
    Agrawal, R., Tran, U., Wessely, O. Development, 136 (2009),pp. 3927-3936
    [2]
    Aguado-Fraile, E., Ramos, E., Saenz-Morales, D. et al. PloS ONE, 7 (2012),p. e44305
    [3]
    Aguilar, A.L.G., Piskol, R., Beitzinger, M. et al. The small RNA expression profile of the developing murine urinary and reproductive systems FEBS Lett., 584 (2010),pp. 4426-4434
    [4]
    Akkina, S., Becker, B.N. MicroRNAs in kidney function and disease Transl. Res., 157 (2011),pp. 236-240
    [5]
    Anglicheau, D., Sharma, V.K., Ding, R. et al. MicroRNA expression profiles predictive of human renal allograft status Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 5330-5335
    [6]
    Barak, H., Surendran, K., Boyle, S.C. The role of notch signaling in kidney development and disease Adv. Exp. Med. Biol., 727 (2012),pp. 99-113
    [7]
    Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function Cell, 116 (2004),pp. 281-297
    [8]
    Bates, C.M. Role of fibroblast growth factor receptor signaling in kidney development Am. J. Physiol. Renal. Physiol., 301 (2011),pp. 245-251
    [9]
    Bello, V., Sirour, C., Moreau, N. et al. Dev. Biol., 317 (2008),pp. 106-120
    [10]
    Betel, D., Wilson, M., Gabow, A. et al. The microRNA.org resource: targets and expression Nucleic Acids Res., 36 (2008),pp. 149-153
    [11]
    Bhatt, K., Mi, Q.S., Dong, Z. MicroRNAs in kidneys: biogenesis, regulation, and pathophysiological roles Am. J. Physiol. Renal. Physiol., 300 (2011),pp. 602-610
    [12]
    Cantaluppi, V., Gatti, S., Medica, D. et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells Kidney Int., 82 (2012),pp. 412-427
    [13]
    Chandrasekaran, K., Karolina, D., Sepramaniam, S. et al. Role of microRNAs in kidney homeostasis and disease Kidney Int., 81 (2012),pp. 617-627
    [14]
    Chau, B.N., Xin, C., Hartner, J. et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways Sci. Transl. Med., 4 (2012),p. 121ra18
    [15]
    Chow, W.H., Dong, L.M., Devesa, S.S. Epidemiology and risk factors for kidney cancer Nat. Rev. Urol., 7 (2010),pp. 245-257
    [16]
    Costantini, F., Shakya, R. GDNF/Ret signaling and the development of the kidney Bioessays, 28 (2006),pp. 117-127
    [17]
    Dai, Y., Sui, W., Lan, H. et al. Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients Rheumatol. Int., 29 (2009),pp. 749-754
    [18]
    Dehwah, S., Xu, A., Huang, Q.Y. MicroRNAs and type 2 diabetes/obesity J. Genet. Genomics, 39 (2011),pp. 11-18
    [19]
    Denby, L., Ramdas, V., McBride, M.W. et al. MiR-21 and miR-214 are consistently modulated during renal injury in rodent models Am. J. Pathol., 179 (2011),pp. 661-672
    [20]
    Dey, N., Das, F., Mariappan, M.M. et al. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes J. Biol. Chem., 286 (2011),pp. 25586-25603
    [21]
    Dey, N., Ghosh-Choudhury, N., Kasinath, B.S. et al. TGFβ-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion PloS ONE, 7 (2012),p. e42316
    [22]
    Drake, K.M., Ruteshouser, E.C., Natrajan, R. et al. Loss of heterozygosity at 2q37 in sporadic Wilms' tumor: putative role for miR-562 Clin. Cancer Res., 15 (2009),pp. 5985-5992
    [23]
    Dressler, G.R. The cellular basis of kidney development Annu. Rev. Cell Dev. Biol., 22 (2006),pp. 509-529
    [24]
    Dressler, G.R. Pediatr. Nephrol., 26 (2011),pp. 1387-1394
    [25]
    Du, B., Ma, L.M., Huang, M.B. et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells FEBS Lett., 584 (2010),pp. 811-816
    [26]
    Duan, J., Huang, H., Lv, X. et al. Cell Biochem. Funct., 30 (2012),pp. 382-389
    [27]
    Eda, A., Takahashi, M., Fukushima, T. et al. Alteration of microRNA expression in the process of mouse brain growth Gene, 485 (2011),pp. 46-52
    [28]
    Eltzschig, H.K., Eckle, T. Ischemia and reperfusion–from mechanism to translation Nat. Med., 17 (2011),pp. 1391-1401
    [29]
    Fu, Y., Li, F., Zhao, D.Y. et al. Gene (2012)
    [30]
    Godwin, J.G., Ge, X., Stephan, K. et al. Identification of a microRNA signature of renal ischemia reperfusion injury Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 14339-14344
    [31]
    Gregory, P.A., Bracken, C.P., Smith, E. et al. Mol. Biol. Cell, 22 (2011),pp. 1686-1698
    [32]
    Grobstein, C. Trans-filter induction of tubules in mouse metanephrogenic mesenchyme Exp. Cell Res., 10 (1956),pp. 424-440
    [33]
    Guertl, B., Senanayake, U., Nusshold, E. et al. Pathobiology, 78 (2011),pp. 210-219
    [34]
    Harvey, S.J., Jarad, G., Cunningham, J. et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease J. Am. Soc. Nephrol., 19 (2008),pp. 2150-2158
    [35]
    Hauser, S., Wulfken, L., Holdenrieder, S. et al. Analysis of serum microRNAs (miR-26a-2*, miR-191, miR-337-3p and miR-378) as potential biomarkers in renal cell carcinoma Cancer Epidemiol., 36 (2012),pp. 391-394
    [36]
    He, L., Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation Nat. Rev. Genet., 5 (2004),pp. 522-531
    [37]
    Ho, J., Kreidberg, J.A. The long and short of microRNAs in the kidney J. Am. Soc. Nephrol., 23 (2012),pp. 400-404
    [38]
    Ho, J., Ng, K.H., Rosen, S. et al. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury J. Am. Soc. Nephrol., 19 (2008),pp. 2069-2075
    [39]
    Huang, E., Mascarenhas, L., Mahour, G. Wilms' tumor and horseshoe kidneys: a case report and review of the literature J. Pediatr. Surg., 39 (2004),pp. 207-212
    [40]
    James, R.G., Kamei, C.N., Wang, Q. et al. Development, 133 (2006),pp. 2995-3004
    [41]
    Jenkins, D., Winyard, P.J.D., Woolf, A.S. Immunohistochemical analysis of Sonic hedgehog signalling in normal human urinary tract development J. Anat., 211 (2007),pp. 620-629
    [42]
    Karner, C.M., Das, A., Ma, Z. et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development Development, 138 (2011),pp. 1247-1257
    [43]
    Karolina, D.S., Wintour, E., Bertram, J. et al. Riboregulators in kidney development and function Biochimie, 92 (2009),pp. 217-225
    [44]
    Kato, M., Putta, S., Wang, M. et al. Nat. Cell Biol., 11 (2009),pp. 881-889
    [45]
    Kato, M., Wang, L., Putta, S. et al. J. Biol. Chem., 285 (2010),pp. 34004-34015
    [46]
    Kato, M., Zhang, J., Wang, M. et al. Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 3432-3437
    [47]
    Kaucsar, T., Racz, Z., Hamar, P. Post-transcriptional gene-expression regulation by microRNA (miRNA) network in renal disease Adv. Drug Deliv. Rev., 62 (2010),pp. 1390-1401
    [48]
    Khella, H.W.Z., White, N.M.A., Faragalla, H. et al. Exploring the role of miRNAs in renal cell carcinoma progression and metastasis through bioinformatic and experimental analyses Tumor Biol., 33 (2012),pp. 131-140
    [49]
    Kobayashi, A., Valerius, M.T., Mugford, J.W. et al. Cell Stem Cell, 3 (2008),pp. 169-181
    [50]
    Kort, E.J., Farber, L., Tretiakova, M. et al. Cancer Res., 68 (2008),pp. 4034-4038
    [51]
    Kreidberg, J.A. Organogenesis, 6 (2010),pp. 61-70
    [52]
    Kriegel, A.J., Fang, Y., Liu, Y. et al. MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor β1: a novel role of miR-382 Nucleic Acids Res., 38 (2010),pp. 8338-8347
    [53]
    Kriegel, A.J., Liu, Y., Cohen, B. et al. Physiol. Genomics, 44 (2012),pp. 259-267
    [54]
    Lee, S.O., Masyuk, T., Splinter, P. et al. J. Clin. Invest., 118 (2008),pp. 3714-3724
    [55]
    Levinson, R.S., Batourina, E., Choi, C. et al. Development, 132 (2005),pp. 529-539
    [56]
    Liang, M., Liu, Y., Mladinov, D. et al. MicroRNA: a new frontier in kidney and blood pressure research Am. J. Physiol. Renal. Physiol., 297 (2009),pp. F553-F558
    [57]
    Linsen, S.E.V., De Wit, E., De Bruijn, E. et al. Small RNA expression and strain specificity in the rat BMC Genomics, 11 (2010),pp. 249-259
    [58]
    Liu, M., Chen, H. The role of microRNAs in colorectal cancer J. Genet. Genomics, 37 (2010),pp. 347-358
    [59]
    Liu, Y., Yin, B., Zhang, C. et al. Biochem. Biophys. Res. Commun., 6 (2012),pp. 371-375
    [60]
    Long, J., Wang, Y., Wang, W. et al. J. Biol. Chem., 286 (2011),pp. 11837-11848
    [61]
    Lorenzen, J., Volkmann, I., Fiedler, J. et al. Urinary miR-210 as a mediator of acute t-cell mediated rejection in renal allograft recipients Am. J. Transplant., 11 (2011),pp. 2221-2227
    [62]
    Lorenzen, J.M., Kielstein, J.T., Hafer, C. et al. Circulating miR-210 predicts survival in critically ill patients with acute kidney injury Clin. J. Am. Soc. Nephrol., 6 (2011),pp. 1540-1546
    [63]
    Lu, J., Kwan, B., Lai, F. et al. Glomerular and tubulointerstitial miR-638, miR-198 and miR-146a expression in lupus nephritis Nephrology, 17 (2012),pp. 346-351
    [64]
    Ma, L., Young, J., Prabhala, H. et al. Nat. Cell Biol., 12 (2010),pp. 247-256
    [65]
    Meier-Kriesche, H.U., Ojo, A., Hanson, J. et al. Increased impact of acute rejection on chronic allograft failure in recent era Transplantation, 70 (2000),pp. 1098-1100
    [66]
    Meng, F., Hackenberg, M., Li, Z. et al. Discovery of novel microRNAs in rat kidney using next generation sequencing and microarray validation PloS ONE, 7 (2012),p. e34394
    [67]
    Miyamoto, N., Yoshida, M., Kuratani, S. et al. Development, 124 (1997),pp. 1653-1664
    [68]
    Mugford, J.W., Sipilä, P., McMahon, J.A. et al. Dev. Biol., 324 (2008),pp. 88-98
    [69]
    Nagalakshmi, V.K., Ren, Q., Pugh, M.M. et al. Kidney Int., 79 (2011),pp. 317-330
    [70]
    Nakada, C., Matsuura, K., Tsukamoto, Y. et al. Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c J. Pathol., 216 (2008),pp. 418-427
    [71]
    Nakada, C., Tsukamoto, Y., Matsuura, K. et al. J. Pathol., 224 (2011),pp. 280-288
    [72]
    Nakai, S., Sugitani, Y., Sato, H. et al. Development, 130 (2003),pp. 4751-4759
    [73]
    Nishinakamura, R., Takasato, M. Kidney Int., 68 (2005),pp. 1948-1950
    [74]
    Nissan, X., Denis, J.A., Saidani, M. et al. miR-203 modulates epithelial differentiation of human embryonic stem cells towards epidermal stratification Dev. Biol., 356 (2011),pp. 506-515
    [75]
    Priyanka, P., Shan, Q., Jacqueline, H. et al. Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease BMC Syst. Biol., 5 (2011),pp. 56-78
    [76]
    Qin, W., Chung, A.C.K., Huang, X.R. et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29 J. Am. Soc. Nephrol., 22 (2011),pp. 1462-1474
    [77]
    Rajewsky, N. microRNA target predictions in animals Nat. Genet., 38 (2006),pp. S8-S13
    [78]
    Redova, M., Poprach, A., Nekvindova, J. et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma J. Transl. Med., 10 (2012),pp. 55-62
    [79]
    Redova, M., Svoboda, M., Slaby, O. MicroRNAs and their target gene networks in renal cell carcinoma Biochem. Biophys. Res. Commun., 405 (2011),pp. 153-156
    [80]
    Reidy, K.J., Rosenblum, N.D. Cell and molecular biology of kidney development Semin. Nephrol., 29 (2009),pp. 321-337
    [81]
    Saal, S., Harvey, S.J. MicroRNAs and the kidney: coming of age Curr. Opin. Nephrol. Hypertens., 18 (2009),pp. 317-323
    [82]
    Sajithlal, G., Zou, D., Silvius, D. et al. Dev. Biol., 284 (2005),pp. 323-336
    [83]
    Sanders, I., Holdenrieder, S., Walgenbach-Brunagel, G. et al. Evaluation of reference genes for the analysis of serum miRNA in patients with prostate cancer, bladder cancer and renal cell carcinoma Int. J. Urol., 19 (2012),pp. 1017-1025
    [84]
    Senanayake, U., Das, S., Vesely, P. et al. Carcinogenesis, 33 (2012),pp. 1014-1021
    [85]
    Serino, G., Sallustio, F., Cox, S.N. et al. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy J. Am. Soc. Nephrol., 23 (2012),pp. 814-824
    [86]
    Sharma, M., Brantley, J.G., Vassmer, D. et al. Gene, 439 (2009),pp. 87-94
    [87]
    Shaw, L., Johnson, P.A., Kimber, S.J. Gene expression profiling of the developing mouse kidney and embryo In Vitro Cell. Dev. Biol. Anim., 46 (2010),pp. 155-165
    [88]
    Shi, S., Yu, L., Chiu, C. et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis J. Am. Soc. Nephrol., 19 (2008),pp. 2159-2169
    [89]
    Slaby, O., Redova, M., Poprach, A. et al. Identification of microRNAs associated with early relapse after nephrectomy in renal cell carcinoma patients Genes Chromosomes Cancer, 51 (2012),pp. 707-716
    [90]
    Stark, M.R., Rao, M.S., Schoenwolf, G.C. et al. Mech. Dev., 98 (2000),pp. 121-125
    [91]
    Sui, W., Dai, Y., Huang, Y.S. et al. Microarray analysis of microRNA expression in acute rejection after renal transplantation Transpl. Immunol., 19 (2008),pp. 81-85
    [92]
    Sun, H., Li, Q.W., Lv, X.Y. et al. Mol. Biol. Rep., 37 (2009),pp. 2951-2958
    [93]
    Sun, Y., Koo, S., White, N. et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs Nucleic Acids Res., 32 (2004),p. e188
    [94]
    Takada, S., Berezikov, E., Yamashita, Y. et al. Mouse microRNA profiles determined with a new and sensitive cloning method Nucleic Acids Res., 34 (2006),p. e115
    [95]
    Tang, Y., Liu, D., Zhang, L. et al. Quantitative analysis of miRNA expression in seven human foetal and adult organs PloS ONE, 6 (2011),p. e28730
    [96]
    Te, J.L., Dozmorov, I.M., Guthridge, J.M. et al. Identification of unique microRNA signature associated with lupus nephritis PloS ONE, 5 (2010),p. e10344
    [97]
    Tian, Z., Greene, A.S., Pietrusz, J.L. et al. MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis Genome Res., 18 (2008),pp. 404-411
    [98]
    Tran, U., Zakin, L., Schweickert, A. et al. Development, 137 (2010),pp. 1107-1116
    [99]
    Tzur, G., Israel, A., Levy, A. et al. Comprehensive gene and microRNA expression profiling reveals a role for microRNAs in human liver development PloS ONE, 4 (2009),p. e7511
    [100]
    Valera, V.A., Walter, B.A., Linehan, W.M. et al. J. Cancer, 2 (2011),pp. 515-526
    [101]
    Veronese, A., Lupini, L., Consiglio, J. et al. Cancer Res., 70 (2010),pp. 3140-3149
    [102]
    Vogt, M., Munding, J., Gruner, M. et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas Virchows Archiv., 458 (2011),pp. 313-322
    [103]
    Wang, B., Komers, R., Carew, R. et al. Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis J. Am. Soc. Nephrol., 23 (2012),pp. 252-265
    [104]
    Wang, G., Kwan, B.C.H., Lai, F.M.M. et al. Intrarenal expression of microRNAs in patients with IgA nephropathy Lab. Invest., 90 (2009),pp. 98-103
    [105]
    Wang, G., Kwan, B.C.H., Lai, F.M.M. et al. Expression of microRNAs in the urinary sediment of patients with IgA nephropathy Dis. Markers, 28 (2010),pp. 79-86
    [106]
    Wang, G., Kwan, B.C.H., Lai, F.M.M. et al. Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy Dis. Markers, 30 (2011),pp. 171-179
    [107]
    Wang, Q., Wang, Y., Minto, A.W. et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy FASEB J., 22 (2008),pp. 4126-4135
    [108]
    Wellik, D.M. Pediatr. Nephrol., 26 (2011),pp. 1559-1565
    [109]
    Wessely, O., Agrawal, R., Tran, U. MicroRNAs in kidney development: lessons from the frog RNA Biol., 7 (2010),pp. 296-299
    [110]
    Wienholds, E., Kloosterman, W.P., Miska, E. et al. MicroRNA expression in zebrafish embryonic development Science, 309 (2005),pp. 310-311
    [111]
    Xiao, Z.D., Diao, L.T., Yang, J.H. et al. Deciphering the transcriptional regulation of microRNA genes in humans with ACTLocater Nucleic Acids Res., 41 (2012),p. e5
    [112]
    Xiong, M., Jiang, L., Zhou, Y. et al. Am. J. Physiol. Renal. Physiol., 302 (2011),pp. 369-379
    [113]
    Xu, P.X., Zheng, W., Huang, L. et al. Development, 130 (2003),pp. 3085-3094
    [114]
    Yamamura, S., Saini, S., Majid, S. et al. Carcinogenesis, 33 (2012),pp. 294-300
    [115]
    Yang, J.H., Li, J.H., Jiang, S. et al. ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data Nucleic Acids Res., 41 (2013),pp. D177-D187
    [116]
    Yang, J.H., Li, J.H., Shao, P. et al. starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data Nucleic Acids Res., 39 (2011),pp. 202-209
    [117]
    Youssef, Y.M., White, N., Grigull, J. et al. Accurate molecular classification of kidney cancer subtypes using microRNA signature Eur. Urol., 59 (2011),pp. 721-730
    [118]
    Yu, F., Deng, H., Yao, H. et al. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells Oncogene, 29 (2010),pp. 4194-4204
    [119]
    Zaman, M.S., Shahryari, V., Deng, G. et al. Up-regulation of microRNA-21 correlates with lower kidney cancer survival PloS ONE, 7 (2012),p. e31060
    [120]
    Zarjou, A., Yang, S., Abraham, E. et al. Identification of a microRNA signature in renal fibrosis: role of miR-21 Am. J. Physiol. Renal. Physiol., 301 (2011),pp. 793-801
    [121]
    Zhang, A., Liu, Y., Shen, Y. et al. miR-21 modulates cell apoptosis by targeting multiple genes in renal cell carcinoma Urology, 78 (2011),pp. 474.e13-474.e19
    [122]
    Zhang, R., Su, B. Small but influential: the role of microRNAs on gene regulatory network and 3′UTR evolution J. Genet. Genomics, 36 (2009),pp. 1-6
    [123]
    Zhao, A., Zeng, Q., Xie, X. et al. J. Genet. Genomics, 39 (2012),pp. 29-35
    [124]
    Zhdanova, O., Srivastava, S., Di, L. et al. The inducible deletion of Drosha and microRNAs in mature podocytes results in a collapsing glomerulopathy Kidney Int., 80 (2011),pp. 719-730
    [125]
    Zhong, X., Chung, A.C.K., Chen, H.Y. et al. Smad3-mediated upregulation of miR-21 promotes renal fibrosis J. Am. Soc. Nephrol., 22 (2011),pp. 1668-1681
    [126]
    Zhou, L., Li, X., Liu, Q. et al. Small RNA transcriptome investigation based on next-generation sequencing technology J. Genet. Genomics, 38 (2011),pp. 505-513
    [127]
    Zhou, Q., Fan, J., Ding, X. et al. J. Biol. Chem., 285 (2010),pp. 40019-40027
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (101) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return