[1] |
Agrawal, R., Tran, U., Wessely, O. Development, 136 (2009),pp. 3927-3936
|
[2] |
Aguado-Fraile, E., Ramos, E., Saenz-Morales, D. et al. PloS ONE, 7 (2012),p. e44305
|
[3] |
Aguilar, A.L.G., Piskol, R., Beitzinger, M. et al. The small RNA expression profile of the developing murine urinary and reproductive systems FEBS Lett., 584 (2010),pp. 4426-4434
|
[4] |
Akkina, S., Becker, B.N. MicroRNAs in kidney function and disease Transl. Res., 157 (2011),pp. 236-240
|
[5] |
Anglicheau, D., Sharma, V.K., Ding, R. et al. MicroRNA expression profiles predictive of human renal allograft status Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 5330-5335
|
[6] |
Barak, H., Surendran, K., Boyle, S.C. The role of notch signaling in kidney development and disease Adv. Exp. Med. Biol., 727 (2012),pp. 99-113
|
[7] |
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function Cell, 116 (2004),pp. 281-297
|
[8] |
Bates, C.M. Role of fibroblast growth factor receptor signaling in kidney development Am. J. Physiol. Renal. Physiol., 301 (2011),pp. 245-251
|
[9] |
Bello, V., Sirour, C., Moreau, N. et al. Dev. Biol., 317 (2008),pp. 106-120
|
[10] |
Betel, D., Wilson, M., Gabow, A. et al. The microRNA.org resource: targets and expression Nucleic Acids Res., 36 (2008),pp. 149-153
|
[11] |
Bhatt, K., Mi, Q.S., Dong, Z. MicroRNAs in kidneys: biogenesis, regulation, and pathophysiological roles Am. J. Physiol. Renal. Physiol., 300 (2011),pp. 602-610
|
[12] |
Cantaluppi, V., Gatti, S., Medica, D. et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells Kidney Int., 82 (2012),pp. 412-427
|
[13] |
Chandrasekaran, K., Karolina, D., Sepramaniam, S. et al. Role of microRNAs in kidney homeostasis and disease Kidney Int., 81 (2012),pp. 617-627
|
[14] |
Chau, B.N., Xin, C., Hartner, J. et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways Sci. Transl. Med., 4 (2012),p. 121ra18
|
[15] |
Chow, W.H., Dong, L.M., Devesa, S.S. Epidemiology and risk factors for kidney cancer Nat. Rev. Urol., 7 (2010),pp. 245-257
|
[16] |
Costantini, F., Shakya, R. GDNF/Ret signaling and the development of the kidney Bioessays, 28 (2006),pp. 117-127
|
[17] |
Dai, Y., Sui, W., Lan, H. et al. Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients Rheumatol. Int., 29 (2009),pp. 749-754
|
[18] |
Dehwah, S., Xu, A., Huang, Q.Y. MicroRNAs and type 2 diabetes/obesity J. Genet. Genomics, 39 (2011),pp. 11-18
|
[19] |
Denby, L., Ramdas, V., McBride, M.W. et al. MiR-21 and miR-214 are consistently modulated during renal injury in rodent models Am. J. Pathol., 179 (2011),pp. 661-672
|
[20] |
Dey, N., Das, F., Mariappan, M.M. et al. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes J. Biol. Chem., 286 (2011),pp. 25586-25603
|
[21] |
Dey, N., Ghosh-Choudhury, N., Kasinath, B.S. et al. TGFβ-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion PloS ONE, 7 (2012),p. e42316
|
[22] |
Drake, K.M., Ruteshouser, E.C., Natrajan, R. et al. Loss of heterozygosity at 2q37 in sporadic Wilms' tumor: putative role for miR-562 Clin. Cancer Res., 15 (2009),pp. 5985-5992
|
[23] |
Dressler, G.R. The cellular basis of kidney development Annu. Rev. Cell Dev. Biol., 22 (2006),pp. 509-529
|
[24] |
Dressler, G.R. Pediatr. Nephrol., 26 (2011),pp. 1387-1394
|
[25] |
Du, B., Ma, L.M., Huang, M.B. et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells FEBS Lett., 584 (2010),pp. 811-816
|
[26] |
Duan, J., Huang, H., Lv, X. et al. Cell Biochem. Funct., 30 (2012),pp. 382-389
|
[27] |
Eda, A., Takahashi, M., Fukushima, T. et al. Alteration of microRNA expression in the process of mouse brain growth Gene, 485 (2011),pp. 46-52
|
[28] |
Eltzschig, H.K., Eckle, T. Ischemia and reperfusion–from mechanism to translation Nat. Med., 17 (2011),pp. 1391-1401
|
[29] |
Fu, Y., Li, F., Zhao, D.Y. et al. Gene (2012)
|
[30] |
Godwin, J.G., Ge, X., Stephan, K. et al. Identification of a microRNA signature of renal ischemia reperfusion injury Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 14339-14344
|
[31] |
Gregory, P.A., Bracken, C.P., Smith, E. et al. Mol. Biol. Cell, 22 (2011),pp. 1686-1698
|
[32] |
Grobstein, C. Trans-filter induction of tubules in mouse metanephrogenic mesenchyme Exp. Cell Res., 10 (1956),pp. 424-440
|
[33] |
Guertl, B., Senanayake, U., Nusshold, E. et al. Pathobiology, 78 (2011),pp. 210-219
|
[34] |
Harvey, S.J., Jarad, G., Cunningham, J. et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease J. Am. Soc. Nephrol., 19 (2008),pp. 2150-2158
|
[35] |
Hauser, S., Wulfken, L., Holdenrieder, S. et al. Analysis of serum microRNAs (miR-26a-2*, miR-191, miR-337-3p and miR-378) as potential biomarkers in renal cell carcinoma Cancer Epidemiol., 36 (2012),pp. 391-394
|
[36] |
He, L., Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation Nat. Rev. Genet., 5 (2004),pp. 522-531
|
[37] |
Ho, J., Kreidberg, J.A. The long and short of microRNAs in the kidney J. Am. Soc. Nephrol., 23 (2012),pp. 400-404
|
[38] |
Ho, J., Ng, K.H., Rosen, S. et al. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury J. Am. Soc. Nephrol., 19 (2008),pp. 2069-2075
|
[39] |
Huang, E., Mascarenhas, L., Mahour, G. Wilms' tumor and horseshoe kidneys: a case report and review of the literature J. Pediatr. Surg., 39 (2004),pp. 207-212
|
[40] |
James, R.G., Kamei, C.N., Wang, Q. et al. Development, 133 (2006),pp. 2995-3004
|
[41] |
Jenkins, D., Winyard, P.J.D., Woolf, A.S. Immunohistochemical analysis of Sonic hedgehog signalling in normal human urinary tract development J. Anat., 211 (2007),pp. 620-629
|
[42] |
Karner, C.M., Das, A., Ma, Z. et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development Development, 138 (2011),pp. 1247-1257
|
[43] |
Karolina, D.S., Wintour, E., Bertram, J. et al. Riboregulators in kidney development and function Biochimie, 92 (2009),pp. 217-225
|
[44] |
Kato, M., Putta, S., Wang, M. et al. Nat. Cell Biol., 11 (2009),pp. 881-889
|
[45] |
Kato, M., Wang, L., Putta, S. et al. J. Biol. Chem., 285 (2010),pp. 34004-34015
|
[46] |
Kato, M., Zhang, J., Wang, M. et al. Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 3432-3437
|
[47] |
Kaucsar, T., Racz, Z., Hamar, P. Post-transcriptional gene-expression regulation by microRNA (miRNA) network in renal disease Adv. Drug Deliv. Rev., 62 (2010),pp. 1390-1401
|
[48] |
Khella, H.W.Z., White, N.M.A., Faragalla, H. et al. Exploring the role of miRNAs in renal cell carcinoma progression and metastasis through bioinformatic and experimental analyses Tumor Biol., 33 (2012),pp. 131-140
|
[49] |
Kobayashi, A., Valerius, M.T., Mugford, J.W. et al. Cell Stem Cell, 3 (2008),pp. 169-181
|
[50] |
Kort, E.J., Farber, L., Tretiakova, M. et al. Cancer Res., 68 (2008),pp. 4034-4038
|
[51] |
Kreidberg, J.A. Organogenesis, 6 (2010),pp. 61-70
|
[52] |
Kriegel, A.J., Fang, Y., Liu, Y. et al. MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor β1: a novel role of miR-382 Nucleic Acids Res., 38 (2010),pp. 8338-8347
|
[53] |
Kriegel, A.J., Liu, Y., Cohen, B. et al. Physiol. Genomics, 44 (2012),pp. 259-267
|
[54] |
Lee, S.O., Masyuk, T., Splinter, P. et al. J. Clin. Invest., 118 (2008),pp. 3714-3724
|
[55] |
Levinson, R.S., Batourina, E., Choi, C. et al. Development, 132 (2005),pp. 529-539
|
[56] |
Liang, M., Liu, Y., Mladinov, D. et al. MicroRNA: a new frontier in kidney and blood pressure research Am. J. Physiol. Renal. Physiol., 297 (2009),pp. F553-F558
|
[57] |
Linsen, S.E.V., De Wit, E., De Bruijn, E. et al. Small RNA expression and strain specificity in the rat BMC Genomics, 11 (2010),pp. 249-259
|
[58] |
Liu, M., Chen, H. The role of microRNAs in colorectal cancer J. Genet. Genomics, 37 (2010),pp. 347-358
|
[59] |
Liu, Y., Yin, B., Zhang, C. et al. Biochem. Biophys. Res. Commun., 6 (2012),pp. 371-375
|
[60] |
Long, J., Wang, Y., Wang, W. et al. J. Biol. Chem., 286 (2011),pp. 11837-11848
|
[61] |
Lorenzen, J., Volkmann, I., Fiedler, J. et al. Urinary miR-210 as a mediator of acute t-cell mediated rejection in renal allograft recipients Am. J. Transplant., 11 (2011),pp. 2221-2227
|
[62] |
Lorenzen, J.M., Kielstein, J.T., Hafer, C. et al. Circulating miR-210 predicts survival in critically ill patients with acute kidney injury Clin. J. Am. Soc. Nephrol., 6 (2011),pp. 1540-1546
|
[63] |
Lu, J., Kwan, B., Lai, F. et al. Glomerular and tubulointerstitial miR-638, miR-198 and miR-146a expression in lupus nephritis Nephrology, 17 (2012),pp. 346-351
|
[64] |
Ma, L., Young, J., Prabhala, H. et al. Nat. Cell Biol., 12 (2010),pp. 247-256
|
[65] |
Meier-Kriesche, H.U., Ojo, A., Hanson, J. et al. Increased impact of acute rejection on chronic allograft failure in recent era Transplantation, 70 (2000),pp. 1098-1100
|
[66] |
Meng, F., Hackenberg, M., Li, Z. et al. Discovery of novel microRNAs in rat kidney using next generation sequencing and microarray validation PloS ONE, 7 (2012),p. e34394
|
[67] |
Miyamoto, N., Yoshida, M., Kuratani, S. et al. Development, 124 (1997),pp. 1653-1664
|
[68] |
Mugford, J.W., Sipilä, P., McMahon, J.A. et al. Dev. Biol., 324 (2008),pp. 88-98
|
[69] |
Nagalakshmi, V.K., Ren, Q., Pugh, M.M. et al. Kidney Int., 79 (2011),pp. 317-330
|
[70] |
Nakada, C., Matsuura, K., Tsukamoto, Y. et al. Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c J. Pathol., 216 (2008),pp. 418-427
|
[71] |
Nakada, C., Tsukamoto, Y., Matsuura, K. et al. J. Pathol., 224 (2011),pp. 280-288
|
[72] |
Nakai, S., Sugitani, Y., Sato, H. et al. Development, 130 (2003),pp. 4751-4759
|
[73] |
Nishinakamura, R., Takasato, M. Kidney Int., 68 (2005),pp. 1948-1950
|
[74] |
Nissan, X., Denis, J.A., Saidani, M. et al. miR-203 modulates epithelial differentiation of human embryonic stem cells towards epidermal stratification Dev. Biol., 356 (2011),pp. 506-515
|
[75] |
Priyanka, P., Shan, Q., Jacqueline, H. et al. Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease BMC Syst. Biol., 5 (2011),pp. 56-78
|
[76] |
Qin, W., Chung, A.C.K., Huang, X.R. et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29 J. Am. Soc. Nephrol., 22 (2011),pp. 1462-1474
|
[77] |
Rajewsky, N. microRNA target predictions in animals Nat. Genet., 38 (2006),pp. S8-S13
|
[78] |
Redova, M., Poprach, A., Nekvindova, J. et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma J. Transl. Med., 10 (2012),pp. 55-62
|
[79] |
Redova, M., Svoboda, M., Slaby, O. MicroRNAs and their target gene networks in renal cell carcinoma Biochem. Biophys. Res. Commun., 405 (2011),pp. 153-156
|
[80] |
Reidy, K.J., Rosenblum, N.D. Cell and molecular biology of kidney development Semin. Nephrol., 29 (2009),pp. 321-337
|
[81] |
Saal, S., Harvey, S.J. MicroRNAs and the kidney: coming of age Curr. Opin. Nephrol. Hypertens., 18 (2009),pp. 317-323
|
[82] |
Sajithlal, G., Zou, D., Silvius, D. et al. Dev. Biol., 284 (2005),pp. 323-336
|
[83] |
Sanders, I., Holdenrieder, S., Walgenbach-Brunagel, G. et al. Evaluation of reference genes for the analysis of serum miRNA in patients with prostate cancer, bladder cancer and renal cell carcinoma Int. J. Urol., 19 (2012),pp. 1017-1025
|
[84] |
Senanayake, U., Das, S., Vesely, P. et al. Carcinogenesis, 33 (2012),pp. 1014-1021
|
[85] |
Serino, G., Sallustio, F., Cox, S.N. et al. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy J. Am. Soc. Nephrol., 23 (2012),pp. 814-824
|
[86] |
Sharma, M., Brantley, J.G., Vassmer, D. et al. Gene, 439 (2009),pp. 87-94
|
[87] |
Shaw, L., Johnson, P.A., Kimber, S.J. Gene expression profiling of the developing mouse kidney and embryo In Vitro Cell. Dev. Biol. Anim., 46 (2010),pp. 155-165
|
[88] |
Shi, S., Yu, L., Chiu, C. et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis J. Am. Soc. Nephrol., 19 (2008),pp. 2159-2169
|
[89] |
Slaby, O., Redova, M., Poprach, A. et al. Identification of microRNAs associated with early relapse after nephrectomy in renal cell carcinoma patients Genes Chromosomes Cancer, 51 (2012),pp. 707-716
|
[90] |
Stark, M.R., Rao, M.S., Schoenwolf, G.C. et al. Mech. Dev., 98 (2000),pp. 121-125
|
[91] |
Sui, W., Dai, Y., Huang, Y.S. et al. Microarray analysis of microRNA expression in acute rejection after renal transplantation Transpl. Immunol., 19 (2008),pp. 81-85
|
[92] |
Sun, H., Li, Q.W., Lv, X.Y. et al. Mol. Biol. Rep., 37 (2009),pp. 2951-2958
|
[93] |
Sun, Y., Koo, S., White, N. et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs Nucleic Acids Res., 32 (2004),p. e188
|
[94] |
Takada, S., Berezikov, E., Yamashita, Y. et al. Mouse microRNA profiles determined with a new and sensitive cloning method Nucleic Acids Res., 34 (2006),p. e115
|
[95] |
Tang, Y., Liu, D., Zhang, L. et al. Quantitative analysis of miRNA expression in seven human foetal and adult organs PloS ONE, 6 (2011),p. e28730
|
[96] |
Te, J.L., Dozmorov, I.M., Guthridge, J.M. et al. Identification of unique microRNA signature associated with lupus nephritis PloS ONE, 5 (2010),p. e10344
|
[97] |
Tian, Z., Greene, A.S., Pietrusz, J.L. et al. MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis Genome Res., 18 (2008),pp. 404-411
|
[98] |
Tran, U., Zakin, L., Schweickert, A. et al. Development, 137 (2010),pp. 1107-1116
|
[99] |
Tzur, G., Israel, A., Levy, A. et al. Comprehensive gene and microRNA expression profiling reveals a role for microRNAs in human liver development PloS ONE, 4 (2009),p. e7511
|
[100] |
Valera, V.A., Walter, B.A., Linehan, W.M. et al. J. Cancer, 2 (2011),pp. 515-526
|
[101] |
Veronese, A., Lupini, L., Consiglio, J. et al. Cancer Res., 70 (2010),pp. 3140-3149
|
[102] |
Vogt, M., Munding, J., Gruner, M. et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas Virchows Archiv., 458 (2011),pp. 313-322
|
[103] |
Wang, B., Komers, R., Carew, R. et al. Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis J. Am. Soc. Nephrol., 23 (2012),pp. 252-265
|
[104] |
Wang, G., Kwan, B.C.H., Lai, F.M.M. et al. Intrarenal expression of microRNAs in patients with IgA nephropathy Lab. Invest., 90 (2009),pp. 98-103
|
[105] |
Wang, G., Kwan, B.C.H., Lai, F.M.M. et al. Expression of microRNAs in the urinary sediment of patients with IgA nephropathy Dis. Markers, 28 (2010),pp. 79-86
|
[106] |
Wang, G., Kwan, B.C.H., Lai, F.M.M. et al. Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy Dis. Markers, 30 (2011),pp. 171-179
|
[107] |
Wang, Q., Wang, Y., Minto, A.W. et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy FASEB J., 22 (2008),pp. 4126-4135
|
[108] |
Wellik, D.M. Pediatr. Nephrol., 26 (2011),pp. 1559-1565
|
[109] |
Wessely, O., Agrawal, R., Tran, U. MicroRNAs in kidney development: lessons from the frog RNA Biol., 7 (2010),pp. 296-299
|
[110] |
Wienholds, E., Kloosterman, W.P., Miska, E. et al. MicroRNA expression in zebrafish embryonic development Science, 309 (2005),pp. 310-311
|
[111] |
Xiao, Z.D., Diao, L.T., Yang, J.H. et al. Deciphering the transcriptional regulation of microRNA genes in humans with ACTLocater Nucleic Acids Res., 41 (2012),p. e5
|
[112] |
Xiong, M., Jiang, L., Zhou, Y. et al. Am. J. Physiol. Renal. Physiol., 302 (2011),pp. 369-379
|
[113] |
Xu, P.X., Zheng, W., Huang, L. et al. Development, 130 (2003),pp. 3085-3094
|
[114] |
Yamamura, S., Saini, S., Majid, S. et al. Carcinogenesis, 33 (2012),pp. 294-300
|
[115] |
Yang, J.H., Li, J.H., Jiang, S. et al. ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data Nucleic Acids Res., 41 (2013),pp. D177-D187
|
[116] |
Yang, J.H., Li, J.H., Shao, P. et al. starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data Nucleic Acids Res., 39 (2011),pp. 202-209
|
[117] |
Youssef, Y.M., White, N., Grigull, J. et al. Accurate molecular classification of kidney cancer subtypes using microRNA signature Eur. Urol., 59 (2011),pp. 721-730
|
[118] |
Yu, F., Deng, H., Yao, H. et al. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells Oncogene, 29 (2010),pp. 4194-4204
|
[119] |
Zaman, M.S., Shahryari, V., Deng, G. et al. Up-regulation of microRNA-21 correlates with lower kidney cancer survival PloS ONE, 7 (2012),p. e31060
|
[120] |
Zarjou, A., Yang, S., Abraham, E. et al. Identification of a microRNA signature in renal fibrosis: role of miR-21 Am. J. Physiol. Renal. Physiol., 301 (2011),pp. 793-801
|
[121] |
Zhang, A., Liu, Y., Shen, Y. et al. miR-21 modulates cell apoptosis by targeting multiple genes in renal cell carcinoma Urology, 78 (2011),pp. 474.e13-474.e19
|
[122] |
Zhang, R., Su, B. Small but influential: the role of microRNAs on gene regulatory network and 3′UTR evolution J. Genet. Genomics, 36 (2009),pp. 1-6
|
[123] |
Zhao, A., Zeng, Q., Xie, X. et al. J. Genet. Genomics, 39 (2012),pp. 29-35
|
[124] |
Zhdanova, O., Srivastava, S., Di, L. et al. The inducible deletion of Drosha and microRNAs in mature podocytes results in a collapsing glomerulopathy Kidney Int., 80 (2011),pp. 719-730
|
[125] |
Zhong, X., Chung, A.C.K., Chen, H.Y. et al. Smad3-mediated upregulation of miR-21 promotes renal fibrosis J. Am. Soc. Nephrol., 22 (2011),pp. 1668-1681
|
[126] |
Zhou, L., Li, X., Liu, Q. et al. Small RNA transcriptome investigation based on next-generation sequencing technology J. Genet. Genomics, 38 (2011),pp. 505-513
|
[127] |
Zhou, Q., Fan, J., Ding, X. et al. J. Biol. Chem., 285 (2010),pp. 40019-40027
|