5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 6
Jun.  2013
Turn off MathJax
Article Contents

Short Tandem Target Mimic: A Long Journey to the Engineered Molecular Landmine for Selective Destruction/Blockage of MicroRNAs in Plants and Animals

doi: 10.1016/j.jgg.2013.02.004
More Information
  • Corresponding author: E-mail address: gtang1@mtu.edu (Guiliang Tang); E-mail address: xtang2@mtu.edu (Xiaoqing Tang)
  • Received Date: 2013-01-09
  • Accepted Date: 2013-02-22
  • Rev Recd Date: 2013-02-03
  • Available Online: 2013-02-28
  • Publish Date: 2013-06-20
  • MicroRNAs (miRNAs) are a population of highly conserved specific small ribo-regulators that negatively regulate gene expressions in both plants and animals. They play a key role in post-transcriptional gene regulation by destabilizing the target gene transcripts or blocking protein translation from them. Interestingly, these negative regulators are largely compromised by an upstream layer of negative regulators “target mimics” found in plants or “endogenous competing RNAs” revealed recently in animals. These endogenous regulatory mechanisms of “double negatives making a positive” have now been developed into a key strategy in the study of small RNA functions. This review presents some reflections on the long journey to the short tandem target mimic (STTM) for selective destruction/blockage of specific miRNAs in plants and animals, and the potential applications of STTM are discussed.
  • loading
  • [1]
    Baker, C.C., Sieber, P., Wellmer, F. et al. Curr. Biol., 15 (2005),pp. 303-315
    [2]
    Bartel, D.P. MicroRNAs: target recognition and regulatory functions Cell, 136 (2009),pp. 215-233
    [3]
    Baulcombe, D. RNA silencing in plants Nature, 431 (2004),pp. 356-363
    [4]
    Brosnan, C.A., Voinnet, O. The long and the short of noncoding RNAs Curr. Opin. Cell Biol., 21 (2009),pp. 416-425
    [5]
    Cesana, M., Cacchiarelli, D., Legnini, I. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA Cell, 147 (2011),pp. 358-369
    [6]
    Ebert, M.S., Sharp, P.A. MicroRNA sponges: progress and possibilities RNA, 16 (2010),pp. 2043-2050
    [7]
    Ebert, M.S., Sharp, P.A. Emerging roles for natural microRNA sponges Curr. Biol., 20 (2010),pp. R858-R861
    [8]
    Ebert, M.S., Neilson, J.R., Sharp, P.A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells Nat. Methods, 4 (2007),pp. 721-726
    [9]
    Franco-Zorrilla, J.M., Valli, A., Todesco, M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity Nat. Genet., 39 (2007),pp. 1033-1037
    [10]
    Ghildiyal, M., Zamore, P.D. Small silencing RNAs: an expanding universe Nat. Rev. Genet., 10 (2009),pp. 94-108
    [11]
    Haraguchi, T., Ozaki, Y., Iba, H. Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells Nucleic Acids Res., 37 (2009),p. e43
    [12]
    Kluiver, J., Slezak-Prochazka, I., Smigielska-Czepiel, K. et al. Generation of miRNA sponge constructs Methods, 58 (2012),pp. 113-117
    [13]
    Kozomara, A., Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data Nucleic Acids Res., 39 (2011),pp. D152-D157
    [14]
    Li, J., Millar, A.A. Expression of a microRNA-resistant target transgene misrepresents the functional significance of the endogenous microRNA: target gene relationship Mol. Plant, 6 (2013),pp. 577-580
    [15]
    Lu, C., Tej, S.S., Luo, S. et al. Elucidation of the small RNA component of the transcriptome Science, 309 (2005),pp. 1567-1569
    [16]
    Mallory, A.C., Bartel, D.P., Bartel, B. Plant Cell, 17 (2005),pp. 1360-1375
    [17]
    Matzke, M., Kanno, T., Daxinger, L. et al. RNA-mediated chromatin-based silencing in plants Curr. Opin. Cell Biol., 21 (2009),pp. 367-376
    [18]
    McConnell, J.R., Barton, M.K. Development, 125 (1998),pp. 2935-2942
    [19]
    Ramachandran, V., Chen, X. Science, 321 (2008),pp. 1490-1492
    [20]
    Salmena, L., Poliseno, L., Tay, Y. et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 146 (2011),pp. 353-358
    [21]
    Simon, S.A., Meyers, B.C. Small RNA-mediated epigenetic modifications in plants Curr. Opin. Cell Biol., 14 (2011),pp. 148-155
    [22]
    Tang, G. siRNA and miRNA: an insight into RISCs Trends Biochem. Sci., 30 (2005),pp. 106-114
    [23]
    Tang, G., Reinhart, B.J., Bartel, D.P. et al. A biochemical framework for RNA silencing in plants Genes Dev., 17 (2003),pp. 49-63
    [24]
    Tang, G., Yan, J., Gu, Y. et al. Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs Methods, 58 (2012),pp. 118-125
    [25]
    Tay, Y., Kats, L., Salmena, L. et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs Cell, 147 (2011),pp. 344-357
    [26]
    Terentyev, D., Belevych, A.E., Terentyeva, R. et al. Circ. Res., 104 (2009),pp. 514-521
    [27]
    Till, B.J., Reynolds, S.H., Greene, E.A. et al. Large-scale discovery of induced point mutations with high-throughput TILLING Genome Res., 13 (2003),pp. 524-530
    [28]
    Vella, M.C., Choi, E.Y., Lin, S.Y. et al. Genes Dev., 18 (2004),pp. 132-137
    [29]
    Xie, J., Ameres, S.L., Friedline, R. et al. Long-term, efficient inhibition of microRNA function in mice using rAAV vectors Nat. Methods, 9 (2012),pp. 403-409
    [30]
    Yan, J., Gu, Y., Jia, X. et al. Plant Cell, 24 (2012),pp. 415-427
    [31]
    Zhang, X., Zou, Z., Gong, P. et al. Biotechnol. Lett., 33 (2011),pp. 403-409
    [32]
    Zhu, Q.H., Upadhyaya, N.M., Gubler, F. et al. BMC Plant Biol., 9 (2009),p. 149
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (81) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return