5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 4
Apr.  2013
Turn off MathJax
Article Contents

MicroRNAs and Their Cross-Talks in Plant Development

doi: 10.1016/j.jgg.2013.02.003
More Information
  • Corresponding author: E-mail address: yhzhao225@zju.edu.cn (Yuhua Zhao); E-mail address: mchen@zju.edu.cn (Ming Chen)
  • Received Date: 2012-10-21
  • Accepted Date: 2013-02-22
  • Rev Recd Date: 2013-02-20
  • Available Online: 2013-03-01
  • Publish Date: 2013-04-20
  • Plant development is a complex process influenced by exogenous and endogenous elements. A series of postembryonic developmental events is involved to form the final architecture and contend with the changing environment. MicroRNA (miRNA) is one of endogenous non-coding RNAs, which plays an important role in plant developmental regulation. In this review, we summarized 34 miRNA families that are closely associated with plant development. Among these families, nine are expressed only in specific organs, whereas 20 families are expressed in at least two different organs. It is known that some miRNAs are expressed across most processes of plant growth, while some appear only at particular developmental stages or under special environmental conditions such as drought, waterlogging and short-day time. These miRNAs execute their diverse functions by regulating developmental gene expression levels, interacting with phytohormone signaling response, participating in the biogenesis of ta-siRNAs and affecting the production of miRNAs.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Achard, P., Herr, A., Baulcombe, D.C. et al. Modulation of floral development by a gibberellin-regulated microRNA Development, 131 (2004),pp. 3357-3365
    [2]
    Aida, M., Ishida, T., Fukaki, H. et al. Plant Cell, 9 (1997),pp. 841-857
    [3]
    Allen, R.S., Li, J., Stahle, M.I. et al. Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 16371-16376
    [4]
    Axtell, M.J., Snyder, J.A., Bartel, D.P. Common functions for diverse small RNAs of land plants Plant Cell, 19 (2007),pp. 1750-1769
    [5]
    Baker, C.C., Sieber, P., Wellmer, F. et al. Curr. Biol., 15 (2005),pp. 303-315
    [6]
    Barakat, A., Sriram, A., Park, J. et al. BMC Genomics, 13 (2012),p. 481
    [7]
    Bian, H., Xie, Y., Guo, F. et al. New Phytol., 196 (2012),pp. 149-161
    [8]
    Blazquez, M.A., Green, R., Nilsson, O. et al. Plant Cell, 10 (1998),pp. 791-800
    [9]
    Boualem, A., Laporte, P., Jovanovic, M. et al. Plant J., 54 (2008),pp. 876-887
    [10]
    Branscheid, A., Sieh, D., Pant, B.D. et al. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis Mol. Plant Microbe Interact., 23 (2010),pp. 915-926
    [11]
    Breakfield, N.W., Corcoran, D.L., Petricka, J.J. et al. Genome Res., 22 (2012),pp. 163-176
    [12]
    Carlsbecker, A., Lee, J.Y., Roberts, C.J. et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate Nature, 465 (2010),pp. 316-321
    [13]
    Chellappan, P., Vanitharani, R., Fauquet, C.M. Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 10381-10386
    [14]
    Chen, H., Li, Z., Xiong, L. A plant microRNA regulates the adaptation of roots to drought stress FEBS Lett., 586 (2012),pp. 1742-1747
    [15]
    Chen, X. Science, 303 (2004),pp. 2022-2025
    [16]
    Chen, X. Small RNAs and their roles in plant development Annu. Rev. Cell Dev. Biol., 25 (2009),pp. 21-44
    [17]
    Chen, X., Zhang, Z., Liu, D. et al. J. Integr. Plant Biol., 52 (2010),pp. 946-951
    [18]
    Chen, Z.H., Bao, M.L., Sun, Y.Z. et al. Plant Mol. Biol., 77 (2011),pp. 619-629
    [19]
    Combier, J.P., Frugier, F., De Billy, F. et al. Genes Dev., 20 (2006),pp. 3084-3088
    [20]
    Cubas, P., Lauter, N., Doebley, J. et al. The TCP domain: a motif found in proteins regulating plant growth and development Plant J., 18 (1999),pp. 215-222
    [21]
    Debernardi, J.M., Rodriguez, R.E., Mecchia, M.A. et al. Functional specialization of the plant miR396 regulatory network through distinct microRNA-target interactions PLoS Genet., 8 (2012),p. e1002419
    [22]
    Ding, D., Zhang, L., Wang, H. et al. Differential expression of miRNAs in response to salt stress in maize roots Ann. Bot., 103 (2009),pp. 29-38
    [23]
    Fahlgren, N., Howell, M.D., Kasschau, K.D. et al. PLoS ONE, 2 (2007),p. e219
    [24]
    Fujii, H., Chiou, T.J., Lin, S.I. et al. Curr. Biol., 15 (2005),pp. 2038-2043
    [25]
    Furuta, K., Lichtenberger, R., Helariutta, Y. The role of mobile small RNA species during root growth and development Curr. Opin. Cell Biol., 24 (2012),pp. 211-216
    [26]
    Gandikota, M., Birkenbbihl, R.P., Hohmann, S. et al. Plant J., 49 (2007),pp. 683-693
    [27]
    Gonzalez-Ibeas, D., Blanca, J., Donaire, L. et al. BMC Genomics, 12 (2011),p. 393
    [28]
    Guo, H.S., Xie, Q., Fei, J.F. et al. Plant Cell, 17 (2005),pp. 1376-1386
    [29]
    Gupta, O.P., Permar, V., Koundal, V. et al. Mol. Biol. Rep., 39 (2012),pp. 817-824
    [30]
    Hewezi, T., Maier, T.R., Nettleton, D. et al. Plant Physiol., 159 (2012),pp. 321-335
    [31]
    Jang, G., Yi, K., Pires, N.D. et al. RSL genes are sufficient for rhizoid system development in early diverging land plants Development, 138 (2011),pp. 2273-2281
    [32]
    Jofuku, K.D., Omidyar, P.K., Gee, Z. et al. Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 3117-3122
    [33]
    Jung, J.H., Seo, P.J., Ahn, J.H. et al. J. Biol. Chem., 287 (2012),pp. 16007-16016
    [34]
    Jung, J.H., Seo, Y.H., Seo, P.J. et al. Plant Cell, 19 (2007),pp. 2736-2748
    [35]
    Katiyar, A., Smita, S., Chinnusamy, V. et al. Identification of miRNAs in sorghum by using bioinformatics approach Plant Signal Behav., 7 (2012),pp. 246-259
    [36]
    Kim, J., Jung, J.H., Reyes, J.L. et al. Plant J., 42 (2005),pp. 84-94
    [37]
    Kim, J.Y., Kwak, K.J., Jung, H.J. et al. Plant Cell Physiol., 51 (2010),pp. 1079-1083
    [38]
    Kiu, H.C., Sang, E.J., Young, K.L. et al. J. Plant Biol., 50 (2007),pp. 282-299
    [39]
    Koyama, T., Furutani, M., Tasaka, M. et al. Plant Cell, 19 (2007),pp. 473-484
    [40]
    Kristin, D., Kasschau, Z.X., Edwards, A. et al. Dev. Cell, 4 (2003),p. 13
    [41]
    Kutter, C., Schob, H., Stadler, M. et al. Plant Cell, 19 (2007),pp. 2417-2429
    [42]
    Laufs, P. Development, 131 (2004),pp. 4311-4322
    [43]
    Lauressergues, D., Delaux, P.M., Formey, D. et al. Plant J., 72 (2012),pp. 512-522
    [44]
    Lauter, N., Kampani, A., Carlson, S. et al. Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 9412-9417
    [45]
    Li, H., Deng, Y., Wu, T. et al. Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation Plant Physiol., 153 (2010),pp. 1759-1770
    [46]
    Li, Q., Jin, X., Zhu, Y.X. J. Genet. Genomics, 39 (2012),pp. 351-360
    [47]
    Li, W., Cui, X., Meng, Z. et al. Plant Physiol., 158 (2012),pp. 1279-1292
    [48]
    Liu, D., Song, Y., Chen, Z. et al. Physiol. Plant, 136 (2009),pp. 223-236
    [49]
    Liu, Q., Chen, Y.Q. Insights into the mechanism of plant development: interactions of miRNAs pathway with phytohormone response Biochem. Biophys. Res. Commun., 384 (2009),pp. 1-5
    [50]
    Liu, Z., Kumari, S., Zhang, L. et al. PLoS ONE, 7 (2012),p. e39786
    [51]
    Lu, S., Sun, Y.H., Chiang, V.L. Plant J., 55 (2008),pp. 131-151
    [52]
    Luo, Q.J., Mittal, A., Jia, F. et al. Plant Mol. Biol., 80 (2011),pp. 117-129
    [53]
    Maizel, A., Jouannet, V.
    [54]
    Mallory, A.C., Bartel, D.P., Bartel, B. Plant Cell, 17 (2005),pp. 1360-1375
    [55]
    Mallory, A.C., Dugas, D.V., Bartel, D.P. et al. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs Curr. Biol., 14 (2004),pp. 1035-1046
    [56]
    Mecchia, M.A., Debernardi, J.M., Rodriguez, R.E. et al. MicroRNA miR396 and RDR6 synergistically regulate leaf development Mech. Dev., 130 (2012),pp. 2-13
    [57]
    Miyashima, S., Koi, S., Hashimoto, T. et al. Development, 138 (2011),pp. 2303-2313
    [58]
    Mockaitis, K., Estelle, M. Auxin receptors and plant development: a new signaling paradigm Annu. Rev. Cell Dev. Biol., 24 (2008),pp. 55-80
    [59]
    Nag, A., King, S., Jack, T. Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 22534-22539
    [60]
    Nagpal, P., Ellis, C.M., Weber, H. et al. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation Development, 132 (2005),pp. 4107-4118
    [61]
    Nath, U., Crewford, B.C., Carpenter, R. et al. Genetic control of surface curvature Science, 299 (2003),pp. 1404-1407
    [62]
    Nodine, M.D., Bartel, D.P. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis Genes Dev., 24 (2010),pp. 2678-2692
    [63]
    Okamuro, J.K., Den Boer, B.G., Jofuku, K.D. Plant Cell, 5 (1993),pp. 1183-1193
    [64]
    Ori, N., Cohen, A.R., Etzioni, A. et al. Nat. Genet., 39 (2007),pp. 787-791
    [65]
    Palatnik, J.F., Allen, E., Wu, X. et al. Control of leaf morphogenesis by microRNAs Nature, 425 (2003),pp. 257-263
    [66]
    Rodriguez, R.E., Mecchia, M.A., Debernardi, J.M. et al. Development, 137 (2010),pp. 103-112
    [67]
    Schommer, C., Palatnik, J.F., Aggarwal, P. et al. Control of jasmonate biosynthesis and senescence by miR319 targets PLoS Biol., 6 (2008),p. e230
    [68]
    Schwab, R., Palatnik, J.F., Rieater, M. et al. Specific effects of microRNAs on the plant transcriptome Dev. Cell, 8 (2005),pp. 517-527
    [69]
    Shleizer-Burko, S., Burko, Y., Ben-Herzel, O. et al. Dynamic growth program regulated by LANCEOLATE enables flexible leaf patterning Development, 138 (2011),pp. 695-704
    [70]
    Si-Ammour, A., Windels, D., Arn-Bouldoires, E. et al. Plant Physiol., 157 (2011),pp. 683-691
    [71]
    Singer, S.D., Krogan, N.T., Ashton, N.W. Clues about the ancestral roles of plant MADS-box genes from a functional analysis of moss homologues Plant Cell Rep., 26 (2007),pp. 1155-1169
    [72]
    Song, J.B., Huang, S.Q., Dalmay, T. et al. Plant Cell Physiol., 53 (2012),pp. 1283-1294
    [73]
    Song, Q.X., Liu, Y.F., Hu, X.Y. et al. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing BMC Plant Biol., 11 (2011),p. 5
    [74]
    Subramanian, S.
    [75]
    Subramanian, S., Fu, Y., Sunkar, R. et al. Novel and nodulation-regulated microRNAs in soybean roots BMC Genomics, 9 (2008),p. 160
    [76]
    , Xiao, P., Zhang, B. PLoS ONE, 7 (2012),p. e32017
    [77]
    Talmor-Neiman, M., Stav, R., Frank, W. et al. Novel micro-RNAs and intermediates of micro-RNA biogenesis from moss Plant J., 47 (2006),pp. 25-37
    [78]
    Thiebaut, F., Grativol, C., Carnavale-Bottion, M. et al. Computational identification and analysis of novel sugarcane microRNAs BMC Genomics, 13 (2012),p. 290
    [79]
    Thiebaut, F., Rojas, C.A., Almeida, K.L. et al. Regulation of miR319 during cold stress in sugarcane Plant Cell Environ., 35 (2012),pp. 502-512
    [80]
    Todesco, M., Rubio-Somoza, I., Paz-Ares, J. et al. PLoS Genet., 6 (2010),p. e1001031
    [81]
    Uberti-Manassero, N.G., Lucero, L.E., Viola, I.L. et al. The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins J. Exp. Bot., 63 (2012),pp. 809-823
    [82]
    Vaucheret, H., Vazquez, F., Crete, P. et al. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development Genes Dev., 18 (2004),pp. 1187-1197
    [83]
    Wang, J.W., Wang, L.J., Mao, Y.B. et al. Plant Cell, 17 (2005),pp. 2204-2216
    [84]
    Wang, L., Mai, Y.X., Zhang, Y.C. et al. Mol. Plant, 3 (2010),pp. 794-806
    [85]
    Williams, L., Grigg, S.P., Xie, M. et al. Development, 132 (2005),pp. 3657-3668
    [86]
    Wollmann, H., Mica, E., Todesco, M. et al. Development, 137 (2010),pp. 3633-3642
    [87]
    Wu, M.F., Tian, Q., Reed, J.W. Development, 133 (2006),pp. 4211-4218
    [88]
    Xia, R., Zhu, H., An, Y.Q. et al. Apple miRNAs and tasiRNAs with novel regulatory networks Genome Biol., 13 (2012),p. R47
    [89]
    Xie, K., Shen, J., Hou, X. et al. Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice Plant Physiol., 158 (2012),pp. 1382-1394
    [90]
    Xie, Z., Kasschau, K.D., Carrington, J.C. Curr. Biol., 13 (2003),pp. 784-789
    [91]
    Xue, L.J., Zhang, J.J., Xue, H.W. Characterization and expression profiles of miRNAs in rice seeds Nucleic Acids Res., 37 (2009),pp. 916-930
    [92]
    Yamaguchi, A., Abe, M. J. Plant Res., 125 (2012),pp. 693-704
    [93]
    Yang, J.H., Han, S.J., Yoon, E.K. et al. Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells Nucleic Acids Res., 34 (2006),pp. 1892-1899
    [94]
    Yoon, E.K., Yang, J.H., Lim, J. et al. Nucleic Acids Res., 38 (2010),pp. 1382-1391
    [95]
    Zhang, B., Pan, X. Expression of microRNAs in cotton Mol. Biotechnol., 42 (2009),pp. 269-274
    [96]
    Zhang, J., Zhang, S., Han, S. et al. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis Planta, 236 (2012),pp. 647-657
    [97]
    Zhao, C.Z., Xia, H., Frazier, T.P. et al. BMC Plant Biol., 10 (2010),p. 3
    [98]
    Zhao, L., Kim, Y., Ding, T.T. et al. Plant J., 51 (2007),pp. 840-849
    [99]
    Zhou, G.K., Kubo, M., Zhong, R. et al. Plant Cell Physiol., 48 (2007),pp. 391-404
    [100]
    Zhou, L., Li, X., Liu, Q. et al. Small RNA transcriptome investigation based on next-generation sequencing technology J. Genet. Genomics, 38 (2011),pp. 505-513
    [101]
    Zhou, L., Liu, Y., Liu, Z. et al. J. Exp. Bot., 61 (2010),pp. 4157-4168
    [102]
    Zhou, M., Gu, L., Li, P. et al. Front. Biol., 5 (2010),pp. 67-90
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (108) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return