[1] |
Anderson, C., Catoe, H., Werner, R. MIR-206 regulates connexin43 expression during skeletal muscle development Nucleic Acids Res., 34 (2006),pp. 5863-5871
|
[2] |
Backs, J., Worst, B.C., Lehmann, L.H. et al. Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4 J. Cell Biol., 195 (2011),pp. 403-415
|
[3] |
Baldwin, K.M., Haddad, F. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms Am. J. Phys. Med. Rehabil., 81 (2002),pp. S40-S51
|
[4] |
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function Cell, 116 (2004),pp. 281-297
|
[5] |
Baskerville, S., Bartel, D.P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes RNA, 11 (2005),pp. 241-247
|
[6] |
Berkes, C.A., Tapscott, S.J. MyoD and the transcriptional control of myogenesis Semin. Cell Dev. Biol., 16 (2005),pp. 585-595
|
[7] |
Boutz, P.L., Chawla, G., Stoilov, P. et al. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development Genes Dev., 21 (2007),pp. 71-84
|
[8] |
Braun, T., Gautel, M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis Nat. Rev. Mol. Cell Biol., 12 (2011),pp. 349-361
|
[9] |
Buckingham, M. Skeletal muscle formation in vertebrates Curr. Opin. Genet. Dev., 11 (2001),pp. 440-448
|
[10] |
Buckingham, M., Bajard, L., Chang, T. et al. The formation of skeletal muscle: from somite to limb J. Anat., 202 (2003),pp. 59-68
|
[11] |
Calin, G.A., Ferracin, M., Cimmino, A. et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia N. Engl. J. Med., 353 (2005),pp. 1793-1801
|
[12] |
Cardinali, B., Castellani, L., Fasanaro, P. et al. Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells PLoS ONE, 4 (2009),p. e7607
|
[13] |
Cesana, M., Cacchiarelli, D., Legnini, I. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA Cell, 147 (2011),pp. 358-369
|
[14] |
Chen, J.F., Mandel, E.M., Thomson, J.M. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation Nat. Genet., 38 (2006),pp. 228-233
|
[15] |
Chen, J.F., Tao, Y., Li, J. et al. MicroRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7 J. Cell Biol., 190 (2010),pp. 867-879
|
[16] |
Chen, Z., Liang, S., Zhao, Y. et al. Development, 139 (2012),pp. 3543-3552
|
[17] |
Clop, A., Marcq, F., Takeda, H. et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep Nat. Genet., 38 (2006),pp. 813-818
|
[18] |
Crippa, S., Cassano, M., Messina, G. et al. miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors J. Cell Biol., 193 (2011),pp. 1197-1212
|
[19] |
Crist, C.G., Montarras, D., Pallafacchina, G. et al. Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 13383-13387
|
[20] |
Dey, B.K., Gagan, J., Dutta, A. miR-206 and -486 induce myoblast differentiation by downregulating Pax7 Mol. Cell. Biol., 31 (2011),pp. 203-214
|
[21] |
Dey, B.K., Gagan, J., Yan, Z. et al. miR-26a is required for skeletal muscle differentiation and regeneration in mice Genes Dev., 26 (2012),pp. 2180-2191
|
[22] |
Drummond, M.J., Glynn, E.L., Fry, C.S. et al. Essential amino acids increase microRNA-499, -208b, and -23a and downregulate myostatin and myocyte enhancer factor 2C mRNA expression in human skeletal muscle J. Nutr., 139 (2009),pp. 2279-2284
|
[23] |
Essen-Gustavsson, B., Karlsson, A., Lundstrom, K. et al. Intramuscular fat and muscle fibre lipid contents in halothane-gene-free pigs fed high or low protein diets and its relation to meat quality Meat Sci., 38 (1994),pp. 269-277
|
[24] |
Feng, Y., Cao, J.H., Li, X.Y. et al. Inhibition of miR-214 expression represses proliferation and differentiation of C2C12 myoblasts Cell Biochem. Funct., 29 (2011),pp. 378-383
|
[25] |
Gagan, J., Dey, B.K., Layer, R. et al. MicroRNA-378 targets the myogenic repressor MyoR during myoblast differentiation J. Biol. Chem., 286 (2011),pp. 19431-19438
|
[26] |
Ge, Y., Sun, Y., Chen, J. IGF-II is regulated by microRNA-125b in skeletal myogenesis J. Cell Biol., 192 (2011),pp. 69-81
|
[27] |
Guller, I., Russell, A.P. MicroRNAs in skeletal muscle: their role and regulation in development, disease and function J. Physiol., 588 (2010),pp. 4075-4087
|
[28] |
Hagiwara, N., Ma, B., Ly, A. Dev. Dyn., 234 (2005),pp. 301-311
|
[29] |
Hasty, P., Bradley, A., Morris, J.H. et al. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene Nature, 364 (1993),pp. 501-506
|
[30] |
He, J., Watkins, S., Kelley, D.E. Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity Diabetes, 50 (2001),pp. 817-823
|
[31] |
Hinits, Y., Hughes, S.M. Mef2s are required for thick filament formation in nascent muscle fibres Development, 134 (2007),pp. 2511-2519
|
[32] |
Hirai, H., Verma, M., Watanabe, S. et al. MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3 J. Cell Biol., 191 (2010),pp. 347-365
|
[33] |
Huang, M.B., Xu, H., Xie, S.J. et al. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis PLoS ONE, 6 (2011),p. e29173
|
[34] |
Huang, T.H., Zhu, M.J., Li, X.Y. et al. Discovery of porcine microRNAs and profiling from skeletal muscle tissues during development PLoS ONE, 3 (2008),p. e3225
|
[35] |
Ishibashi, J., Perry, R.L., Asakura, A. et al. MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions J. Cell Biol., 171 (2005),pp. 471-482
|
[36] |
Ji, J., Tsika, G.L., Rindt, H. et al. Puralpha and Purbeta collaborate with Sp3 to negatively regulate beta-myosin heavy chain gene expression during skeletal muscle inactivity Mol. Cell. Biol., 27 (2007),pp. 1531-1543
|
[37] |
Juan, A.H., Kumar, R.M., Marx, J.G. et al. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells Mol. Cell, 36 (2009),pp. 61-74
|
[38] |
Kalderon, N., Epstein, M.L., Gilula, N.B. Cell-to-cell communication and myogenesis J. Cell Biol., 75 (1977),pp. 788-806
|
[39] |
Karasseva, N., Tsika, G., Ji, J. et al. Transcription enhancer factor 1 binds multiple muscle MEF2 and A/T-rich elements during fast-to-slow skeletal muscle fiber type transitions Mol. Cell. Biol., 23 (2003),pp. 5143-5164
|
[40] |
Kassar-Duchossoy, L., Giacone, E., Gayraud-Morel, B. et al. Pax3/Pax7 mark a novel population of primitive myogenic cells during development Genes Dev., 19 (2005),pp. 1426-1431
|
[41] |
Kim, H.K., Lee, Y.S., Sivaprasad, U. et al. Muscle-specific microRNA miR-206 promotes muscle differentiation J. Cell Biol., 174 (2006),pp. 677-687
|
[42] |
Klont, R.E., Brocks, L., Eikelenboom, G. Muscle fibre type and meat quality Meat Sci., 49S1 (1998),pp. S219-S229
|
[43] |
Kota, J., Chivukula, R.R., O'Donnell, K.A. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model Cell, 137 (2009),pp. 1005-1017
|
[44] |
Li, T., Wu, R., Zhang, Y. et al. A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs BMC Genomics, 12 (2011),p. 186
|
[45] |
Liang, Y., Ridzon, D., Wong, L. et al. Characterization of microRNA expression profiles in normal human tissues BMC Genomics, 8 (2007),p. 166
|
[46] |
Liu, N., Williams, A.H., Kim, Y. et al. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133 Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 20844-20849
|
[47] |
Lu, L., Zhou, L., Chen, E.Z. et al. A novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network PLoS ONE, 7 (2012),p. e27596
|
[48] |
McCarthy, J.J. MicroRNA-206: the skeletal muscle-specific myomiR Biochim. Biophys. Acta, 1779 (2008),pp. 682-691
|
[49] |
McCarthy, J.J., Esser, K.A., Peterson, C.A. et al. Evidence of MyomiR network regulation of beta-myosin heavy chain gene expression during skeletal muscle atrophy Physiol. Genomics, 39 (2009),pp. 219-226
|
[50] |
McDaneld, T.G., Smith, T.P., Doumit, M.E. et al. MicroRNA transcriptome profiles during swine skeletal muscle development BMC Genomics, 10 (2009),p. 77
|
[51] |
Miska, E.A., Karlsson, C., Langley, E. et al. HDAC4 deacetylase associates with and represses the MEF2 transcription factor Embo. J., 18 (1999),pp. 5099-5107
|
[52] |
Monemi, M., Eriksson, P.O., Eriksson, A. et al. Adverse changes in fibre type composition of the human masseter versus biceps brachii muscle during aging J. Neurol. Sci., 154 (1998),pp. 35-48
|
[53] |
Nabeshima, Y., Hanaoka, K., Hayasaka, M. et al. Myogenin gene disruption results in perinatal lethality because of severe muscle defect Nature, 364 (1993),pp. 532-535
|
[54] |
Naguibneva, I., Ameyar-Zazoua, M., Polesskaya, A. et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation Nat. Cell Biol., 8 (2006),pp. 278-284
|
[55] |
Naya, F.J., Olson, E. MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation Curr. Opin. Cell Biol., 11 (1999),pp. 683-688
|
[56] |
O'Rourke, J.R., Georges, S.A., Seay, H.R. et al. Essential role for Dicer during skeletal muscle development Dev. Biol., 311 (2007),pp. 359-368
|
[57] |
Pette, D., Staron, R.S. Mammalian skeletal muscle fiber type transitions Int. Rev. Cytol., 170 (1997),pp. 143-223
|
[58] |
Pette, D., Staron, R.S. Myosin isoforms, muscle fiber types, and transitions Microsc. Res. Tech., 50 (2000),pp. 500-509
|
[59] |
Picard, B., Lefaucheur, L., Berri, C. et al. Muscle fibre ontogenesis in farm animal species Reprod. Nutr. Dev., 42 (2002),pp. 415-431
|
[60] |
Rao, P.K., Kumar, R.M., Farkhondeh, M. et al. Myogenic factors that regulate expression of muscle-specific microRNAs Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 8721-8726
|
[61] |
Relaix, F., Montarras, D., Zaffran, S. et al. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells J. Cell Biol., 172 (2006),pp. 91-102
|
[62] |
Rosenberg, M.I., Georges, S.A., Asawachaicharn, A. et al. MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206 J. Cell Biol., 175 (2006),pp. 77-85
|
[63] |
Rowe, R.W., Goldspink, G. Muscle fibre growth in five different muscles in both sexes of mice J. Anat., 104 (1969),pp. 519-530
|
[64] |
Ryu, Y.C., Kim, B.C. The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle Meat Sci., 71 (2005),pp. 351-357
|
[65] |
Safdar, A., Abadi, A., Akhtar, M. et al. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice PLoS ONE, 4 (2009),p. e5610
|
[66] |
Sarkar, S., Dey, B.K., Dutta, A. MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A Mol. Biol. Cell, 21 (2010),pp. 2138-2149
|
[67] |
Seok, H.Y., Tatsuguchi, M., Callis, T.E. et al. miR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation J. Biol. Chem., 286 (2011),pp. 35339-35346
|
[68] |
Shen, H., McElhinny, A.S., Cao, Y. et al. The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis Genes Dev., 20 (2006),pp. 675-688
|
[69] |
Stockdale, F.E. Mechanisms of formation of muscle fiber types Cell Struct. Funct., 22 (1997),pp. 37-43
|
[70] |
Sumariwalla, V.M., Klein, W.H. Similar myogenic functions for myogenin and MRF4 but not MyoD in differentiated murine embryonic stem cells Genesis, 30 (2001),pp. 239-249
|
[71] |
Sun, Q., Zhang, Y., Yang, G. et al. Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation Nucleic Acids Res., 36 (2008),pp. 2690-2699
|
[72] |
Takada, S., Berezikov, E., Yamashita, Y. et al. Mouse microRNA profiles determined with a new and sensitive cloning method Nucleic Acids Res., 34 (2006),p. e115
|
[73] |
Tanner, C.J., Barakat, H.A., Dohm, G.L. et al. Muscle fiber type is associated with obesity and weight loss Am. J. Physiol. Endocrinol. Metab., 282 (2002),pp. E1191-E1196
|
[74] |
Townley-Tilson, W.H., Callis, T.E., Wang, D. MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease Int. J. Biochem. Cell Biol., 42 (2010),pp. 1252-1255
|
[75] |
van Rooij, E., Liu, N., Olson, E.N. MicroRNAs flex their muscles Trends Genet., 24 (2008),pp. 159-166
|
[76] |
van Rooij, E., Sutherland, L.B., Qi, X. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA Science, 316 (2007),pp. 575-579
|
[77] |
van Rooij, E., Quiat, D., Johnson, B.A. et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance Dev. Cell, 17 (2009),pp. 662-673
|
[78] |
Vasudevan, S., Tong, Y., Steitz, J.A. Switching from repression to activation: microRNAs can up-regulate translation Science, 318 (2007),pp. 1931-1934
|
[79] |
Vestergaard, M., Oksbjerg, N., Henckel, P. Influence of feeding intensity, grazing and finishing feeding on muscle fibre characteristics and meat colour of semitendinosus, longissimus dorsi and supraspinatus muscles of young bulls Meat Sci., 54 (2000),pp. 177-185
|
[80] |
Walden, T.B., Timmons, J.A., Keller, P. et al. Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes J. Cell Physiol., 218 (2009),pp. 444-449
|
[81] |
Wang, X.H., Hu, Z., Klein, J.D. et al. Decreased miR-29 suppresses myogenesis in CKD J. Am. Soc. Nephrol., 22 (2011),pp. 2068-2076
|
[82] |
Wang, Y.X., Zhang, C.L., Yu, R.T. et al. Regulation of muscle fiber type and running endurance by PPARdelta PLoS Biol., 2 (2004),p. e294
|
[83] |
Wienholds, E., Kloosterman, W.P., Miska, E. et al. MicroRNA expression in zebrafish embryonic development Science, 309 (2005),pp. 310-311
|
[84] |
Williams, A.H., Liu, N., van Rooij, E. et al. MicroRNA control of muscle development and disease Curr. Opin. Cell Biol., 21 (2009),pp. 461-469
|
[85] |
Wong, C.F., Tellam, R.L. MicroRNA-26a targets the histone methyltransferase enhancer of Zeste homolog 2 during myogenesis J. Biol. Chem., 283 (2008),pp. 9836-9843
|
[86] |
Yaffe, D., Saxel, O. A myogenic cell line with altered serum requirements for differentiation Differentiation, 7 (1977),pp. 159-166
|
[87] |
Yu, Z., Jian, Z., Shen, S.H. et al. Global analysis of microRNA target gene expression reveals that miRNA targets are lower expressed in mature mouse and Drosophila tissues than in the embryos Nucleic Acids Res., 35 (2007),pp. 152-164
|
[88] |
Yun, K., Wold, B. Skeletal muscle determination and differentiation: story of a core regulatory network and its context Curr. Opin. Cell Biol., 8 (1996),pp. 877-889
|
[89] |
Zammit, P.S., Relaix, F., Nagata, Y. et al. Pax7 and myogenic progression in skeletal muscle satellite cells J. Cell Sci., 119 (2006),pp. 1824-1832
|
[90] |
Zhang, J., Ying, Z.Z., Tang, Z.L. et al. J. Biol. Chem., 287 (2012),pp. 21093-21101
|
[91] |
Zhu, Z., Miller, J.B. MRF4 can substitute for myogenin during early stages of myogenesis Dev. Dyn., 209 (1997),pp. 233-241
|
[92] |
Zisoulis, D.G., Kai, Z.S., Chang, R.K. et al. Autoregulation of microRNA biogenesis by let-7 and Argonaute Nature, 486 (2012),pp. 541-544
|