5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 3
Mar.  2013
Turn off MathJax
Article Contents

MicroRNAs Involved in Skeletal Muscle Differentiation

doi: 10.1016/j.jgg.2013.02.002
More Information
  • Corresponding author: E-mail address: xqzhang@scau.edu.cn (Xiquan Zhang)
  • Received Date: 2012-10-28
  • Accepted Date: 2013-02-16
  • Rev Recd Date: 2013-02-14
  • Available Online: 2013-02-20
  • Publish Date: 2013-03-20
  • MicroRNAs (miRNAs) negatively regulate gene expression by promoting degradation of target mRNAs or inhibiting their translation. Previous studies have expanded our understanding that miRNAs play an important role in myogenesis and have a big impact on muscle mass, muscle fiber type and muscle-related diseases. The muscle-specific miRNAs, miR-206, miR-1 and miR-133, are among the most studied and best characterized miRNAs in skeletal muscle differentiation. They have a profound influence on multiple muscle differentiation processes, such as alternative splicing, DNA synthesis, and cell apoptosis. Many non-muscle-specific miRNAs are also required for the differentiation of muscle through interaction with myogenic factors. Studying the regulatory mechanisms of these miRNAs in muscle differentiation will extend our knowledge of miRNAs in muscle biology and will improve our understanding of the myogenesis regulation.
  • loading
  • [1]
    Anderson, C., Catoe, H., Werner, R. MIR-206 regulates connexin43 expression during skeletal muscle development Nucleic Acids Res., 34 (2006),pp. 5863-5871
    [2]
    Backs, J., Worst, B.C., Lehmann, L.H. et al. Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4 J. Cell Biol., 195 (2011),pp. 403-415
    [3]
    Baldwin, K.M., Haddad, F. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms Am. J. Phys. Med. Rehabil., 81 (2002),pp. S40-S51
    [4]
    Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function Cell, 116 (2004),pp. 281-297
    [5]
    Baskerville, S., Bartel, D.P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes RNA, 11 (2005),pp. 241-247
    [6]
    Berkes, C.A., Tapscott, S.J. MyoD and the transcriptional control of myogenesis Semin. Cell Dev. Biol., 16 (2005),pp. 585-595
    [7]
    Boutz, P.L., Chawla, G., Stoilov, P. et al. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development Genes Dev., 21 (2007),pp. 71-84
    [8]
    Braun, T., Gautel, M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis Nat. Rev. Mol. Cell Biol., 12 (2011),pp. 349-361
    [9]
    Buckingham, M. Skeletal muscle formation in vertebrates Curr. Opin. Genet. Dev., 11 (2001),pp. 440-448
    [10]
    Buckingham, M., Bajard, L., Chang, T. et al. The formation of skeletal muscle: from somite to limb J. Anat., 202 (2003),pp. 59-68
    [11]
    Calin, G.A., Ferracin, M., Cimmino, A. et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia N. Engl. J. Med., 353 (2005),pp. 1793-1801
    [12]
    Cardinali, B., Castellani, L., Fasanaro, P. et al. Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells PLoS ONE, 4 (2009),p. e7607
    [13]
    Cesana, M., Cacchiarelli, D., Legnini, I. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA Cell, 147 (2011),pp. 358-369
    [14]
    Chen, J.F., Mandel, E.M., Thomson, J.M. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation Nat. Genet., 38 (2006),pp. 228-233
    [15]
    Chen, J.F., Tao, Y., Li, J. et al. MicroRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7 J. Cell Biol., 190 (2010),pp. 867-879
    [16]
    Chen, Z., Liang, S., Zhao, Y. et al. Development, 139 (2012),pp. 3543-3552
    [17]
    Clop, A., Marcq, F., Takeda, H. et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep Nat. Genet., 38 (2006),pp. 813-818
    [18]
    Crippa, S., Cassano, M., Messina, G. et al. miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors J. Cell Biol., 193 (2011),pp. 1197-1212
    [19]
    Crist, C.G., Montarras, D., Pallafacchina, G. et al. Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 13383-13387
    [20]
    Dey, B.K., Gagan, J., Dutta, A. miR-206 and -486 induce myoblast differentiation by downregulating Pax7 Mol. Cell. Biol., 31 (2011),pp. 203-214
    [21]
    Dey, B.K., Gagan, J., Yan, Z. et al. miR-26a is required for skeletal muscle differentiation and regeneration in mice Genes Dev., 26 (2012),pp. 2180-2191
    [22]
    Drummond, M.J., Glynn, E.L., Fry, C.S. et al. Essential amino acids increase microRNA-499, -208b, and -23a and downregulate myostatin and myocyte enhancer factor 2C mRNA expression in human skeletal muscle J. Nutr., 139 (2009),pp. 2279-2284
    [23]
    Essen-Gustavsson, B., Karlsson, A., Lundstrom, K. et al. Intramuscular fat and muscle fibre lipid contents in halothane-gene-free pigs fed high or low protein diets and its relation to meat quality Meat Sci., 38 (1994),pp. 269-277
    [24]
    Feng, Y., Cao, J.H., Li, X.Y. et al. Inhibition of miR-214 expression represses proliferation and differentiation of C2C12 myoblasts Cell Biochem. Funct., 29 (2011),pp. 378-383
    [25]
    Gagan, J., Dey, B.K., Layer, R. et al. MicroRNA-378 targets the myogenic repressor MyoR during myoblast differentiation J. Biol. Chem., 286 (2011),pp. 19431-19438
    [26]
    Ge, Y., Sun, Y., Chen, J. IGF-II is regulated by microRNA-125b in skeletal myogenesis J. Cell Biol., 192 (2011),pp. 69-81
    [27]
    Guller, I., Russell, A.P. MicroRNAs in skeletal muscle: their role and regulation in development, disease and function J. Physiol., 588 (2010),pp. 4075-4087
    [28]
    Hagiwara, N., Ma, B., Ly, A. Dev. Dyn., 234 (2005),pp. 301-311
    [29]
    Hasty, P., Bradley, A., Morris, J.H. et al. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene Nature, 364 (1993),pp. 501-506
    [30]
    He, J., Watkins, S., Kelley, D.E. Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity Diabetes, 50 (2001),pp. 817-823
    [31]
    Hinits, Y., Hughes, S.M. Mef2s are required for thick filament formation in nascent muscle fibres Development, 134 (2007),pp. 2511-2519
    [32]
    Hirai, H., Verma, M., Watanabe, S. et al. MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3 J. Cell Biol., 191 (2010),pp. 347-365
    [33]
    Huang, M.B., Xu, H., Xie, S.J. et al. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis PLoS ONE, 6 (2011),p. e29173
    [34]
    Huang, T.H., Zhu, M.J., Li, X.Y. et al. Discovery of porcine microRNAs and profiling from skeletal muscle tissues during development PLoS ONE, 3 (2008),p. e3225
    [35]
    Ishibashi, J., Perry, R.L., Asakura, A. et al. MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions J. Cell Biol., 171 (2005),pp. 471-482
    [36]
    Ji, J., Tsika, G.L., Rindt, H. et al. Puralpha and Purbeta collaborate with Sp3 to negatively regulate beta-myosin heavy chain gene expression during skeletal muscle inactivity Mol. Cell. Biol., 27 (2007),pp. 1531-1543
    [37]
    Juan, A.H., Kumar, R.M., Marx, J.G. et al. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells Mol. Cell, 36 (2009),pp. 61-74
    [38]
    Kalderon, N., Epstein, M.L., Gilula, N.B. Cell-to-cell communication and myogenesis J. Cell Biol., 75 (1977),pp. 788-806
    [39]
    Karasseva, N., Tsika, G., Ji, J. et al. Transcription enhancer factor 1 binds multiple muscle MEF2 and A/T-rich elements during fast-to-slow skeletal muscle fiber type transitions Mol. Cell. Biol., 23 (2003),pp. 5143-5164
    [40]
    Kassar-Duchossoy, L., Giacone, E., Gayraud-Morel, B. et al. Pax3/Pax7 mark a novel population of primitive myogenic cells during development Genes Dev., 19 (2005),pp. 1426-1431
    [41]
    Kim, H.K., Lee, Y.S., Sivaprasad, U. et al. Muscle-specific microRNA miR-206 promotes muscle differentiation J. Cell Biol., 174 (2006),pp. 677-687
    [42]
    Klont, R.E., Brocks, L., Eikelenboom, G. Muscle fibre type and meat quality Meat Sci., 49S1 (1998),pp. S219-S229
    [43]
    Kota, J., Chivukula, R.R., O'Donnell, K.A. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model Cell, 137 (2009),pp. 1005-1017
    [44]
    Li, T., Wu, R., Zhang, Y. et al. A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs BMC Genomics, 12 (2011),p. 186
    [45]
    Liang, Y., Ridzon, D., Wong, L. et al. Characterization of microRNA expression profiles in normal human tissues BMC Genomics, 8 (2007),p. 166
    [46]
    Liu, N., Williams, A.H., Kim, Y. et al. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133 Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 20844-20849
    [47]
    Lu, L., Zhou, L., Chen, E.Z. et al. A novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network PLoS ONE, 7 (2012),p. e27596
    [48]
    McCarthy, J.J. MicroRNA-206: the skeletal muscle-specific myomiR Biochim. Biophys. Acta, 1779 (2008),pp. 682-691
    [49]
    McCarthy, J.J., Esser, K.A., Peterson, C.A. et al. Evidence of MyomiR network regulation of beta-myosin heavy chain gene expression during skeletal muscle atrophy Physiol. Genomics, 39 (2009),pp. 219-226
    [50]
    McDaneld, T.G., Smith, T.P., Doumit, M.E. et al. MicroRNA transcriptome profiles during swine skeletal muscle development BMC Genomics, 10 (2009),p. 77
    [51]
    Miska, E.A., Karlsson, C., Langley, E. et al. HDAC4 deacetylase associates with and represses the MEF2 transcription factor Embo. J., 18 (1999),pp. 5099-5107
    [52]
    Monemi, M., Eriksson, P.O., Eriksson, A. et al. Adverse changes in fibre type composition of the human masseter versus biceps brachii muscle during aging J. Neurol. Sci., 154 (1998),pp. 35-48
    [53]
    Nabeshima, Y., Hanaoka, K., Hayasaka, M. et al. Myogenin gene disruption results in perinatal lethality because of severe muscle defect Nature, 364 (1993),pp. 532-535
    [54]
    Naguibneva, I., Ameyar-Zazoua, M., Polesskaya, A. et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation Nat. Cell Biol., 8 (2006),pp. 278-284
    [55]
    Naya, F.J., Olson, E. MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation Curr. Opin. Cell Biol., 11 (1999),pp. 683-688
    [56]
    O'Rourke, J.R., Georges, S.A., Seay, H.R. et al. Essential role for Dicer during skeletal muscle development Dev. Biol., 311 (2007),pp. 359-368
    [57]
    Pette, D., Staron, R.S. Mammalian skeletal muscle fiber type transitions Int. Rev. Cytol., 170 (1997),pp. 143-223
    [58]
    Pette, D., Staron, R.S. Myosin isoforms, muscle fiber types, and transitions Microsc. Res. Tech., 50 (2000),pp. 500-509
    [59]
    Picard, B., Lefaucheur, L., Berri, C. et al. Muscle fibre ontogenesis in farm animal species Reprod. Nutr. Dev., 42 (2002),pp. 415-431
    [60]
    Rao, P.K., Kumar, R.M., Farkhondeh, M. et al. Myogenic factors that regulate expression of muscle-specific microRNAs Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 8721-8726
    [61]
    Relaix, F., Montarras, D., Zaffran, S. et al. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells J. Cell Biol., 172 (2006),pp. 91-102
    [62]
    Rosenberg, M.I., Georges, S.A., Asawachaicharn, A. et al. MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206 J. Cell Biol., 175 (2006),pp. 77-85
    [63]
    Rowe, R.W., Goldspink, G. Muscle fibre growth in five different muscles in both sexes of mice J. Anat., 104 (1969),pp. 519-530
    [64]
    Ryu, Y.C., Kim, B.C. The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle Meat Sci., 71 (2005),pp. 351-357
    [65]
    Safdar, A., Abadi, A., Akhtar, M. et al. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice PLoS ONE, 4 (2009),p. e5610
    [66]
    Sarkar, S., Dey, B.K., Dutta, A. MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A Mol. Biol. Cell, 21 (2010),pp. 2138-2149
    [67]
    Seok, H.Y., Tatsuguchi, M., Callis, T.E. et al. miR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation J. Biol. Chem., 286 (2011),pp. 35339-35346
    [68]
    Shen, H., McElhinny, A.S., Cao, Y. et al. The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis Genes Dev., 20 (2006),pp. 675-688
    [69]
    Stockdale, F.E. Mechanisms of formation of muscle fiber types Cell Struct. Funct., 22 (1997),pp. 37-43
    [70]
    Sumariwalla, V.M., Klein, W.H. Similar myogenic functions for myogenin and MRF4 but not MyoD in differentiated murine embryonic stem cells Genesis, 30 (2001),pp. 239-249
    [71]
    Sun, Q., Zhang, Y., Yang, G. et al. Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation Nucleic Acids Res., 36 (2008),pp. 2690-2699
    [72]
    Takada, S., Berezikov, E., Yamashita, Y. et al. Mouse microRNA profiles determined with a new and sensitive cloning method Nucleic Acids Res., 34 (2006),p. e115
    [73]
    Tanner, C.J., Barakat, H.A., Dohm, G.L. et al. Muscle fiber type is associated with obesity and weight loss Am. J. Physiol. Endocrinol. Metab., 282 (2002),pp. E1191-E1196
    [74]
    Townley-Tilson, W.H., Callis, T.E., Wang, D. MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease Int. J. Biochem. Cell Biol., 42 (2010),pp. 1252-1255
    [75]
    van Rooij, E., Liu, N., Olson, E.N. MicroRNAs flex their muscles Trends Genet., 24 (2008),pp. 159-166
    [76]
    van Rooij, E., Sutherland, L.B., Qi, X. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA Science, 316 (2007),pp. 575-579
    [77]
    van Rooij, E., Quiat, D., Johnson, B.A. et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance Dev. Cell, 17 (2009),pp. 662-673
    [78]
    Vasudevan, S., Tong, Y., Steitz, J.A. Switching from repression to activation: microRNAs can up-regulate translation Science, 318 (2007),pp. 1931-1934
    [79]
    Vestergaard, M., Oksbjerg, N., Henckel, P. Influence of feeding intensity, grazing and finishing feeding on muscle fibre characteristics and meat colour of semitendinosus, longissimus dorsi and supraspinatus muscles of young bulls Meat Sci., 54 (2000),pp. 177-185
    [80]
    Walden, T.B., Timmons, J.A., Keller, P. et al. Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes J. Cell Physiol., 218 (2009),pp. 444-449
    [81]
    Wang, X.H., Hu, Z., Klein, J.D. et al. Decreased miR-29 suppresses myogenesis in CKD J. Am. Soc. Nephrol., 22 (2011),pp. 2068-2076
    [82]
    Wang, Y.X., Zhang, C.L., Yu, R.T. et al. Regulation of muscle fiber type and running endurance by PPARdelta PLoS Biol., 2 (2004),p. e294
    [83]
    Wienholds, E., Kloosterman, W.P., Miska, E. et al. MicroRNA expression in zebrafish embryonic development Science, 309 (2005),pp. 310-311
    [84]
    Williams, A.H., Liu, N., van Rooij, E. et al. MicroRNA control of muscle development and disease Curr. Opin. Cell Biol., 21 (2009),pp. 461-469
    [85]
    Wong, C.F., Tellam, R.L. MicroRNA-26a targets the histone methyltransferase enhancer of Zeste homolog 2 during myogenesis J. Biol. Chem., 283 (2008),pp. 9836-9843
    [86]
    Yaffe, D., Saxel, O. A myogenic cell line with altered serum requirements for differentiation Differentiation, 7 (1977),pp. 159-166
    [87]
    Yu, Z., Jian, Z., Shen, S.H. et al. Global analysis of microRNA target gene expression reveals that miRNA targets are lower expressed in mature mouse and Drosophila tissues than in the embryos Nucleic Acids Res., 35 (2007),pp. 152-164
    [88]
    Yun, K., Wold, B. Skeletal muscle determination and differentiation: story of a core regulatory network and its context Curr. Opin. Cell Biol., 8 (1996),pp. 877-889
    [89]
    Zammit, P.S., Relaix, F., Nagata, Y. et al. Pax7 and myogenic progression in skeletal muscle satellite cells J. Cell Sci., 119 (2006),pp. 1824-1832
    [90]
    Zhang, J., Ying, Z.Z., Tang, Z.L. et al. J. Biol. Chem., 287 (2012),pp. 21093-21101
    [91]
    Zhu, Z., Miller, J.B. MRF4 can substitute for myogenin during early stages of myogenesis Dev. Dyn., 209 (1997),pp. 233-241
    [92]
    Zisoulis, D.G., Kai, Z.S., Chang, R.K. et al. Autoregulation of microRNA biogenesis by let-7 and Argonaute Nature, 486 (2012),pp. 541-544
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (81) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return