[1] |
Aghajan, M., Jonai, N., Flick, K. et al. Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase Nat. Biotechnol., 28 (2010),pp. 738-742
|
[2] |
Akhoondi, S., Sun, D., von der Lehr, N. et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer Cancer Res., 67 (2007),pp. 9006-9012
|
[3] |
Alonso, S.R., Ortiz, P., Pollan, M. et al. Progression in cutaneous malignant melanoma is associated with distinct expression profiles: a tissue microarray-based study Am. J. Pathol., 164 (2004),pp. 193-203
|
[4] |
Anzi, S., Finkin, S., Shaulian, E. Transcriptional repression of c-Jun's E3 ubiquitin ligases contributes to c-Jun induction by UV Cell Signal., 20 (2008),pp. 862-871
|
[5] |
Arbeit, J.M., Munger, K., Howley, P.M. et al. Progressive squamous epithelial neoplasia in K14-human papillomavirus type 16 transgenic mice J. Virol., 68 (1994),pp. 4358-4368
|
[6] |
Bai, C., Sen, P., Hofmann, K. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box Cell, 86 (1996),pp. 263-274
|
[7] |
Bai, J., Zhou, Y., Chen, G. et al. Overexpression of Cullin1 is associated with poor prognosis of patients with gastric cancer Hum. Pathol., 42 (2011),pp. 375-383
|
[8] |
Bergers, G., Hanahan, D., Coussens, L.M. Angiogenesis and apoptosis are cellular parameters of neoplastic progression in transgenic mouse models of tumorigenesis Int. J. Dev. Biol., 42 (1998),pp. 995-1002
|
[9] |
Bhatia, N., Demmer, T.A., Sharma, A.K. et al. Role of beta-TrCP ubiquitin ligase receptor in UVB mediated responses in skin Arch. Biochem. Biophys., 508 (2011),pp. 178-184
|
[10] |
Bhatia, N., Demmer, T.A., Spiegelman, V.S. Inhibition of beta-TrCP function potentiates UVB-induced apoptosis in hTERT-immortalized normal human keratinocytes Photochem. Photobiol., 84 (2008),pp. 376-381
|
[11] |
Bhatia, N., Herter, J.R., Slaga, T.J. et al. Mouse homologue of HOS (mHOS) is overexpressed in skin tumors and implicated in constitutive activation of NF-kappaB Oncogene, 21 (2002),pp. 1501-1509
|
[12] |
Bhatia, S., Afanasiev, O., Nghiem, P. Immunobiology of Merkel cell carcinoma: implications for immunotherapy of a polyomavirus-associated cancer Curr. Oncol. Rep., 13 (2011),pp. 488-497
|
[13] |
Brownell, J.E., Sintchak, M.D., Gavin, J.M. et al. Mol. Cell, 37 (2010),pp. 102-111
|
[14] |
Carrano, A.C., Eytan, E., Hershko, A. et al. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27 Nat. Cell Biol., 1 (1999),pp. 193-199
|
[15] |
Chen, G., Cheng, Y., Martinka, M. et al. Cul1 expression is increased in early stages of human melanoma Pigment Cell Melanoma Res., 23 (2010),pp. 572-574
|
[16] |
Chen, G., Cheng, Y., Zhang, Z. et al. Cytoplasmic Skp2 expression is increased in human melanoma and correlated with patient survival PLoS ONE, 6 (2011),p. e17578
|
[17] |
Chen, G., Li, G. Increased Cul1 expression promotes melanoma cell proliferation through regulating p27 expression Int. J. Oncol., 37 (2010),pp. 1339-1344
|
[18] |
Chen, Q., Xie, W., Kuhn, D.J. et al. Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy Blood, 111 (2008),pp. 4690-4699
|
[19] |
Chen, Z.J., Sun, L.J. Nonproteolytic functions of ubiquitin in cell signaling Mol. Cell, 33 (2009),pp. 275-286
|
[20] |
Clifford, S.C., Astuti, D., Hooper, L. et al. The pVHL-associated SCF ubiquitin ligase complex: molecular genetic analysis of elongin B and C, Rbx1 and HIF-1alpha in renal cell carcinoma Oncogene, 20 (2001),pp. 5067-5074
|
[21] |
Colburn, N.H., Former, B.F., Nelson, K.A. et al. Tumour promoter induces anchorage independence irreversibly Nature, 281 (1979),pp. 589-591
|
[22] |
Coussens, L.M., Hanahan, D., Arbeit, J.M. Genetic predisposition and parameters of malignant progression in K14-HPV16 transgenic mice Am. J. Pathol., 149 (1996),pp. 1899-1917
|
[23] |
Curiel-Lewandrowski, C., Yamasaki, H., Si, C.P. et al. Loss of nuclear pro-IL-16 facilitates cell cycle progression in human cutaneous T cell lymphoma J. Clin. Invest., 121 (2011),pp. 4838-4849
|
[24] |
D'Andrea, A., Pellman, D. Deubiquitinating enzymes: a new class of biological regulators Crit. Rev. Biochem. Mol. Biol., 33 (1998),pp. 337-352
|
[25] |
Deshaies, R.J., Joazeiro, C.A. RING domain E3 ubiquitin ligases Annu. Rev. Biochem., 78 (2009),pp. 399-434
|
[26] |
Dorrello, N.V., Peschiaroli, A., Guardavaccaro, D. et al. S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth Science, 314 (2006),pp. 467-471
|
[27] |
Duan, H., Wang, Y., Aviram, M. et al. SAG, a novel zinc RING finger protein that protects cells from apoptosis induced by redox agents Mol. Cell Biol., 19 (1999),pp. 3145-3155
|
[28] |
Duan, S., Skaar, J.R., Kuchay, S. et al. mTOR generates an auto-amplification loop by triggering the betaTrCP- and CK1alpha-dependent degradation of DEPTOR Mol. Cell, 44 (2011),pp. 317-324
|
[29] |
Einspahr, J.G., Bowden, G.T., Alberts, D.S. Skin cancer chemoprevention: strategies to save our skin Recent Results Cancer Res., 163 (2003),pp. 151-164
|
[30] |
Erickson, L.A., Papotti, M., Volante, M. et al. Merkel cell carcinomas: expression of S-phase kinase-associated protein 2 (Skp2), p27, and proliferation markers Endocr. Pathol., 14 (2003),pp. 221-229
|
[31] |
Frescas, D., Pagano, M. Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer Nat. Rev. Cancer, 8 (2008),pp. 438-449
|
[32] |
Fuchs, S.Y., Spiegelman, V.S., Kumar, K.G. The many faces of beta-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer Oncogene, 23 (2004),pp. 2028-2036
|
[33] |
Gao, D., Inuzuka, H., Tan, M.K. et al. Mol. Cell, 44 (2011),pp. 290-303
|
[34] |
Gu, Q., Bowden, G.T., Normolle, D. et al. SAG/ROC2 E3 ligase regulates skin carcinogenesis by stage-dependent targeting of c-Jun/AP1 and IkappaB-alpha/NF-kappaB J. Cell Biol., 178 (2007),pp. 1009-1023
|
[35] |
Gu, Q., Tan, M., Sun, Y. SAG/ROC2/Rbx2 is a novel activator protein-1 target that promotes c-Jun degradation and inhibits 12-O-tetradecanoylphorbol-13-acetate-induced neoplastic transformation Cancer Res., 67 (2007),pp. 3616-3625
|
[36] |
Hartwell, L.H., Mortimer, R.K., Culotti, J. et al. Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants Genetics, 74 (1973),pp. 267-286
|
[37] |
He, H., Gu, Q., Zheng, M. et al. SAG/ROC2/RBX2 E3 ligase promotes UVB-induced skin hyperplasia, but not skin tumors, by simultaneously targeting c-Jun/AP-1 and p27 Carcinogenesis, 29 (2008),pp. 858-865
|
[38] |
Hershko, A., Ciechanover, A. The ubiquitin system Annu. Rev. Biochem., 67 (1998),pp. 425-479
|
[39] |
Ikeda, F., Dikic, I. Atypical ubiquitin chains: new molecular signals. ‘Protein modifications: beyond the usual suspects’ review series EMBO Rep., 9 (2008),pp. 536-542
|
[40] |
Ishikawa, Y., Hosogane, M., Okuyama, R. et al. Opposing functions of Fbxw7 in keratinocyte growth, differentiation and skin tumorigenesis mediated through negative regulation of c-Myc and Notch Oncogene (2012)
|
[41] |
Jia, L., Li, H., Sun, Y. Induction of p21-dependent senescence by an NAE inhibitor, MLN4924, as a mechanism of growth suppression Neoplasia, 13 (2011),pp. 561-569
|
[42] |
Jia, L., Soengas, M.S., Sun, Y. ROC1/RBX1 E3 ubiquitin ligase silencing suppresses tumor cell growth via sequential induction of G2-M arrest, apoptosis, and senescence Cancer Res., 69 (2009),pp. 4974-4982
|
[43] |
Jia, L., Sun, Y. SCF E3 ubiquitin ligases as anticancer targets Curr. Cancer Drug Targets, 11 (2011),pp. 347-356
|
[44] |
Jia, L., Yang, J., Hao, X. et al. Validation of SAG/RBX2/ROC2 E3 ubiquitin ligase as an anticancer and radiosensitizing target Clin. Cancer Res., 16 (2010),pp. 814-824
|
[45] |
Jin, J., Cardozo, T., Lovering, R.C. et al. Systematic analysis and nomenclature of mammalian F-box proteins Genes Dev., 18 (2004),pp. 2573-2580
|
[46] |
Kamura, T., Conrad, M.N., Yan, Q. et al. The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2 Genes Dev., 13 (1999),pp. 2928-2933
|
[47] |
Katagiri, Y., Hozumi, Y., Kondo, S. J. Dermatol. Sci., 42 (2006),pp. 215-224
|
[48] |
Kipreos, E.T., Lander, L.E., Wing, J.P. et al. Cell, 85 (1996),pp. 829-839
|
[49] |
Koch, U., Radtke, F. Notch and cancer: a double-edged sword Cell. Mol. Life Sci., 64 (2007),pp. 2746-2762
|
[50] |
Koike, J., Sagara, N., Kirikoshi, H. et al. Molecular cloning and genomic structure of the betaTRCP2 gene on chromosome 5q35.1 Biochem. Biophys. Res. Commun., 269 (2000),pp. 103-109
|
[51] |
Leiter, U., Garbe, C. Epidemiology of melanoma and nonmelanoma skin cancer–the role of sunlight Adv. Exp. Med. Biol., 624 (2008),pp. 89-103
|
[52] |
Li, Q., Murphy, M., Ross, J. et al. Skp2 and p27kip1 expression in melanocytic nevi and melanoma: an inverse relationship J. Cutan. Pathol., 31 (2004),pp. 633-642
|
[53] |
Lin, H.K., Chen, Z., Wang, G. et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence Nature, 464 (2010),pp. 374-379
|
[54] |
Lin, J.J., Milhollen, M.A., Smith, P.G. et al. NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells Cancer Res., 70 (2010),pp. 10310-10320
|
[55] |
Liu, J., Suresh Kumar, K.G., Yu, D. et al. Oncogenic BRAF regulates beta-Trcp expression and NF-kappaB activity in human melanoma cells Oncogene, 26 (2007),pp. 1954-1958
|
[56] |
Liu, L., Lee, S., Zhang, J. et al. CUL4A abrogation augments DNA damage response and protection against skin carcinogenesis Mol. Cell, 34 (2009),pp. 451-460
|
[57] |
Luo, Z., Yu, G., Lee, H.W. et al. The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth Cancer Res., 72 (2012),pp. 3360-3371
|
[58] |
Mao, J.H., Perez-Losada, J., Wu, D. et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene Nature, 432 (2004),pp. 775-779
|
[59] |
Margottin, F., Bour, S.P., Durand, H. et al. A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif Mol. Cell, 1 (1998),pp. 565-574
|
[60] |
Mathias, N., Johnson, S.L., Winey, M. et al. Cdc53p acts in concert with Cdc4p and Cdc34p to control the G1-to-S-phase transition and identifies a conserved family of proteins Mol. Cell. Biol., 16 (1996),pp. 6634-6643
|
[61] |
Miele, L. Notch signaling Clin. Cancer Res., 12 (2006),pp. 1074-1079
|
[62] |
Milhollen, M.A., Narayanan, U., Soucy, T.A. et al. Inhibition of NEDD8-activating enzyme induces rereplication and apoptosis in human tumor cells consistent with deregulating CDT1 turnover Cancer Res., 71 (2011),pp. 3042-3051
|
[63] |
Milhollen, M.A., Traore, T., Adams-Duffy, J. et al. MLN4924, a NEDD8-activating enzyme inhibitor, is active in diffuse large B-cell lymphoma models: rationale for treatment of NF-kappaB-dependent lymphoma Blood, 116 (2010),pp. 1515-1523
|
[64] |
Mo, J.S., Kim, M.Y., Han, S.O. et al. Integrin-linked kinase controls Notch1 signaling by down-regulation of protein stability through Fbw7 ubiquitin ligase Mol. Cell. Biol., 27 (2007),pp. 5565-5574
|
[65] |
Munger, K., Scheffner, M., Huibregtse, J.M. et al. Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products Cancer Surv., 12 (1992),pp. 197-217
|
[66] |
Nai, G., Marques, M. Role of ROC1 protein in the control of cyclin D1 protein expression in skin melanomas Pathol. Res. Pract., 207 (2011),pp. 174-181
|
[67] |
Nakayama, K.I., Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer Nat. Rev. Cancer, 6 (2006),pp. 369-381
|
[68] |
Nalepa, G., Rolfe, M., Harper, J.W. Drug discovery in the ubiquitin-proteasome system Nat. Rev. Drug Discov., 5 (2006),pp. 596-613
|
[69] |
Nawrocki, S.T., Griffin, P., Kelly, K.R. et al. MLN4924: a novel first-in-class inhibitor of NEDD8-activating enzyme for cancer therapy Expert Opin. Investig. Drugs, 21 (2012),pp. 1563-1573
|
[70] |
Nicolas, M., Wolfer, A., Raj, K. et al. Notch1 functions as a tumor suppressor in mouse skin Nat. Genet., 33 (2003),pp. 416-421
|
[71] |
Ohta, T., Michel, J.J., Schottelius, A.J. et al. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity Mol. Cell, 3 (1999),pp. 535-541
|
[72] |
Orlicky, S., Tang, X., Neduva, V. et al. An allosteric inhibitor of substrate recognition by the SCF(Cdc4) ubiquitin ligase Nat. Biotechnol., 28 (2010),pp. 733-737
|
[73] |
Penin, R.M., Fernandez-Figueras, M.T., Puig, L. et al. Over-expression of p45(SKP2) in Kaposi's sarcoma correlates with higher tumor stage and extracutaneous involvement but is not directly related to p27(KIP1) down-regulation Mod. Pathol., 15 (2002),pp. 1227-1235
|
[74] |
Perez-Losada, J., Wu, D., DelRosario, R. et al. Allele-specific deletions in mouse tumors identify Fbxw7 as germline modifier of tumor susceptibility PLoS ONE, 7 (2012),p. e31301
|
[75] |
Peterson, T.R., Laplante, M., Thoreen, C.C. et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival Cell, 137 (2009),pp. 873-886
|
[76] |
Reifenberger, J., Knobbe, C.B., Wolter, M. et al. Molecular genetic analysis of malignant melanomas for aberrations of the WNT signaling pathway genes CTNNB1, APC, ICAT and BTRC Int. J. Cancer, 100 (2002),pp. 549-556
|
[77] |
Ribatti, D., Nico, B., Crivellato, E. et al. The history of the angiogenic switch concept Leukemia, 21 (2007),pp. 44-52
|
[78] |
Rosso, S., Zanetti, R., Pippione, M. et al. Parallel risk assessment of melanoma and basal cell carcinoma: skin characteristics and sun exposure Melanoma Res., 8 (1998),pp. 573-583
|
[79] |
Saladi, R.N., Persaud, A.N. The causes of skin cancer: a comprehensive review Drugs Today (Barc), 41 (2005),pp. 37-53
|
[80] |
Salehi-Tabar, R., Nguyen-Yamamoto, L., Tavera-Mendoza, L.E. et al. Vitamin D receptor as a master regulator of the c-MYC/MXD1 network Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 18827-18832
|
[81] |
Salon, C., Brambilla, E., Brambilla, C. et al. Altered pattern of Cul-1 protein expression and neddylation in human lung tumours: relationships with CAND1 and cyclin E protein levels J. Pathol., 213 (2007),pp. 303-310
|
[82] |
Sarikas, A., Hartmann, T., Pan, Z.Q. The cullin protein family Genome Biol., 12 (2011),p. 220
|
[83] |
Schmid, T., Jansen, A.P., Baker, A.R. et al. Translation inhibitor Pdcd4 is targeted for degradation during tumor promotion Cancer Res., 68 (2008),pp. 1254-1260
|
[84] |
Seol, J.H., Feldman, R.M.R., Zachariae, W.Z. et al. Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34 Genes Dev., 13 (1999),pp. 1614-1626
|
[85] |
Serres, M.P., Zlotek-Zlotkiewicz, E., Concha, C. et al. Oncogene, 30 (2011)
|
[86] |
Siegel, R., DeSantis, C., Virgo, K. et al. Cancer treatment and survivorship statistics, 2012 CA Cancer J. Clin., 62 (2012),pp. 220-241
|
[87] |
Sistrunk, C., Macias, E., Nakayama, K. et al. Skp2 is necessary for Myc-induced keratinocyte proliferation but dispensable for Myc oncogenic activity in the oral epithelium Am. J. Pathol., 178 (2011),pp. 2470-2477
|
[88] |
Skaar, J.R., D'Angiolella, V., Pagan, J.K. et al. SnapShot: F box proteins II Cell, 137 (2009),p. 1358 e1
|
[89] |
Soucy, T.A., Dick, L.R., Smith, P.G. et al. The NEDD8 Conjugation Pathway and Its Relevance in Cancer Biology and Therapy Genes Cancer, 1 (2010),pp. 708-716
|
[90] |
Soucy, T.A., Smith, P.G., Milhollen, M.A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer Nature, 458 (2009),pp. 732-736
|
[91] |
Sumimoto, H., Hirata, K., Yamagata, S. et al. Effective inhibition of cell growth and invasion of melanoma by combined suppression of BRAF (V599E) and Skp2 with lentiviral RNAi Int. J. Cancer, 118 (2006),pp. 472-476
|
[92] |
Sun, Y. E3 ubiquitin ligases as cancer targets and biomarkers Neoplasia, 8 (2006),pp. 645-654
|
[93] |
Sun, Y., Hegamyer, G., Colburn, N.H. Molecular cloning of five messenger RNAs differentially expressed in preneoplastic or neoplastic JB6 mouse epidermal cells: one is homologous to human tissue inhibitor of metalloproteinases-3 Cancer Res., 54 (1994),pp. 1139-1144
|
[94] |
Sun, Y., Li, H. Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase Protein Cell (2012)
|
[95] |
Sun, Y., Tan, M., Duan, H. et al. SAG/ROC/Rbx/Hrt, a zinc RING finger gene family: molecular cloning, biochemical properties, and biological functions Antioxid. Redox Signal., 3 (2001),pp. 635-650
|
[96] |
Sutterluty, H., Chatelain, E., Marti, A. et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells Nat. Cell Biol., 1 (1999),pp. 207-214
|
[97] |
Swaroop, M., Bian, J., Aviram, M. et al. Expression, purification, and biochemical characterization of SAG, a RING finger redox sensitive protein Free Radic. Biol. Med., 27 (1999),pp. 193-202
|
[98] |
Swaroop, M., Wang, Y., Miller, P. et al. Yeast homolog of human SAG/ROC2/Rbx2/Hrt2 is essential for cell growth, but not for germination: Chip profiling implicates its role in cell cycle regulation Oncogene, 19 (2000),pp. 2855-2866
|
[99] |
Swords, R.T., Kelly, K.R., Smith, P.G. et al. Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia Blood, 115 (2010),pp. 3796-3800
|
[100] |
Tan, M., Gallegos, J.R., Gu, Q. et al. SAG/ROC-SCFbeta-TrCP E3 ubiquitin ligase promotes pro-caspase-3 degradation as a mechanism of apoptosis protection Neoplasia, 8 (2006),pp. 1042-1054
|
[101] |
Tan, M., Gu, Q., He, H. et al. SAG/ROC2/RBX2 is a HIF-1 target gene that promotes HIF-1alpha ubiquitination and degradation Oncogene, 27 (2008),pp. 1404-1411
|
[102] |
Tan, M., Li, Y., Yang, R. et al. Inactivation of SAG E3 ubiquitin ligase blocks embryonic stem cell differentiation and sensitizes leukemia cells to retinoid acid PLoS ONE, 6 (2011),p. e27726
|
[103] |
Tan, M., Zhao, Y., Kim, S.J. et al. SAG/RBX2/ROC2 E3 ubiquitin ligase is essential for vascular and neural development by targeting NF1 for degradation Dev. Cell, 21 (2011),pp. 1062-1076
|
[104] |
Tan, M., Zhu, Y., Kovacev, J. et al. Disruption of Sag/Rbx2/Roc2 induces radiosensitization by increasing ROS levels and blocking NF-kB activation in mouse embryonic stem cells Free Radic. Biol. Med., 49 (2010),pp. 976-983
|
[105] |
Tan, P., Fuchs, S.Y., Chen, A. et al. Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of IkBa Mol. Cell, 3 (1999),pp. 527-533
|
[106] |
Tsvetkov, L.M., Yeh, K.-H., Lee, S.-J. et al. Curr. Biol., 9 (1999),pp. 661-664
|
[107] |
Vaid, M., Prasad, R., Sun, Q. et al. Silymarin targets beta-catenin signaling in blocking migration/invasion of human melanoma cells PLoS ONE, 6 (2011),p. e23000
|
[108] |
Wang, Y., Dai, D.L., Martinka, M. et al. Prognostic significance of nuclear ING3 expression in human cutaneous melanoma Clin. Cancer Res., 13 (2007),pp. 4111-4116
|
[109] |
Wang, Z., Inuzuka, H., Zhong, J. et al. Tumor suppressor functions of FBW7 in cancer development and progression FEBS Lett., 586 (2012),pp. 1409-1418
|
[110] |
Wei, D., Sun, Y. Small RING finger proteins RBX1 and RBX2 of SCF E3 ubiquitin ligases: the role in cancer and as cancer targets Genes Cancer, 1 (2010),pp. 700-707
|
[111] |
Welcker, M., Clurman, B.E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation Nat. Rev. Cancer, 8 (2008),pp. 83-93
|
[112] |
Woenckhaus, C., Maile, S., Uffmann, S. et al. Expression of Skp2 and p27KIP1 in naevi and malignant melanoma of the skin and its relation to clinical outcome Histol. Histopathol., 20 (2005),pp. 501-508
|
[113] |
Wolter, M., Scharwachter, C., Reifenberger, J. et al. Absence of detectable alterations in the putative tumor suppressor gene BTRC in cerebellar medulloblastomas and cutaneous basal cell carcinomas Acta Neuropathol., 106 (2003),pp. 287-290
|
[114] |
Wu, K., Fuchs, S.Y., Chen, A. et al. The SCF(HOS/beta-TRCP)-ROC1 E3 ubiquitin ligase utilizes two distinct domains within CUL1 for substrate targeting and ubiquitin ligation Mol. Cell. Biol., 20 (2000),pp. 1382-1393
|
[115] |
Yang, D., Li, L., Liu, H. et al. Induction of autophagy and senescence by knockdown of ROC1 E3 ubiquitin ligase to suppress the growth of liver cancer cells Cell Death Differ., 20 (2013),pp. 235-247
|
[116] |
Ye, Y., Rape, M. Building ubiquitin chains: E2 enzymes at work Nat. Rev. Mol. Cell Biol., 10 (2009),pp. 755-764
|
[117] |
Zhang, G., Li, G. Novel multiple markers to distinguish melanoma from dysplastic nevi PLoS ONE, 7 (2012),p. e45037
|
[118] |
Zhang, H., Kobayashi, R., Galaktionov, K. et al. p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase Cell, 82 (1995),pp. 915-925
|
[119] |
Zhao, Y., Sun, Y. Cullin-RING ligases (CRLs) as attractive anti-cancer targets Curr. Pharm. Des (2012)
|
[120] |
Zhao, Y., Sun, Y. Targeting the mTOR-DEPTOR pathway by CRL E3 ubiquitin ligases: therapeutic application Neoplasia, 14 (2012),pp. 360-367
|
[121] |
Zhao, Y., Xiong, X., Jia, L. et al. Targeting Cullin-RING ligases by MLN4924 induces autophagy via modulating the HIF1-REDD1-TSC1-mTORC1-DEPTOR axis Cell Death Dis., 3 (2012),p. e386
|
[122] |
Zhao, Y., Xiong, X., Sun, Y. DEPTOR, an mTOR Inhibitor, is a physiological substrate of SCFβTrCP E3 ubiquitin ligase and regulates survival and autophagy Mol. Cell, 44 (2011),pp. 304-316
|
[123] |
Zheng, N., Schulman, B.A., Song, L. et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex Nature, 416 (2002),pp. 703-709
|