5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 3
Mar.  2013
Turn off MathJax
Article Contents

Role of SKP1-CUL1-F-Box-Protein (SCF) E3 Ubiquitin Ligases in Skin Cancer

doi: 10.1016/j.jgg.2013.02.001
More Information
  • Corresponding author: E-mail address: sunyi@umich.edu (Yi Sun)
  • Received Date: 2013-01-17
  • Accepted Date: 2013-02-04
  • Rev Recd Date: 2013-01-30
  • Available Online: 2013-02-09
  • Publish Date: 2013-03-20
  • Many biological processes such as cell proliferation, differentiation, and cell death depend precisely on the timely synthesis and degradation of key regulatory proteins. While protein synthesis can be regulated at multiple levels, protein degradation is mainly controlled by the ubiquitin–proteasome system (UPS), which consists of two distinct steps: (1) ubiquitylation of targeted protein by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase, and (2) subsequent degradation by the 26S proteasome. Among all E3 ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsible for the turnover of many key regulatory proteins. Aberrant regulation of SCF E3 ligases is associated with various human diseases, such as cancers, including skin cancer. In this review, we provide a comprehensive overview of all currently published data to define a promoting role of SCF E3 ligases in the development of skin cancer. The future directions in this area of research are also discussed with an ultimate goal to develop small molecule inhibitors of SCF E3 ligases as a novel approach for the treatment of human skin cancer. Furthermore, altered components or substrates of SCF E3 ligases may also be developed as the biomarkers for early diagnosis or predicting prognosis.
  • loading
  • [1]
    Aghajan, M., Jonai, N., Flick, K. et al. Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase Nat. Biotechnol., 28 (2010),pp. 738-742
    [2]
    Akhoondi, S., Sun, D., von der Lehr, N. et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer Cancer Res., 67 (2007),pp. 9006-9012
    [3]
    Alonso, S.R., Ortiz, P., Pollan, M. et al. Progression in cutaneous malignant melanoma is associated with distinct expression profiles: a tissue microarray-based study Am. J. Pathol., 164 (2004),pp. 193-203
    [4]
    Anzi, S., Finkin, S., Shaulian, E. Transcriptional repression of c-Jun's E3 ubiquitin ligases contributes to c-Jun induction by UV Cell Signal., 20 (2008),pp. 862-871
    [5]
    Arbeit, J.M., Munger, K., Howley, P.M. et al. Progressive squamous epithelial neoplasia in K14-human papillomavirus type 16 transgenic mice J. Virol., 68 (1994),pp. 4358-4368
    [6]
    Bai, C., Sen, P., Hofmann, K. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box Cell, 86 (1996),pp. 263-274
    [7]
    Bai, J., Zhou, Y., Chen, G. et al. Overexpression of Cullin1 is associated with poor prognosis of patients with gastric cancer Hum. Pathol., 42 (2011),pp. 375-383
    [8]
    Bergers, G., Hanahan, D., Coussens, L.M. Angiogenesis and apoptosis are cellular parameters of neoplastic progression in transgenic mouse models of tumorigenesis Int. J. Dev. Biol., 42 (1998),pp. 995-1002
    [9]
    Bhatia, N., Demmer, T.A., Sharma, A.K. et al. Role of beta-TrCP ubiquitin ligase receptor in UVB mediated responses in skin Arch. Biochem. Biophys., 508 (2011),pp. 178-184
    [10]
    Bhatia, N., Demmer, T.A., Spiegelman, V.S. Inhibition of beta-TrCP function potentiates UVB-induced apoptosis in hTERT-immortalized normal human keratinocytes Photochem. Photobiol., 84 (2008),pp. 376-381
    [11]
    Bhatia, N., Herter, J.R., Slaga, T.J. et al. Mouse homologue of HOS (mHOS) is overexpressed in skin tumors and implicated in constitutive activation of NF-kappaB Oncogene, 21 (2002),pp. 1501-1509
    [12]
    Bhatia, S., Afanasiev, O., Nghiem, P. Immunobiology of Merkel cell carcinoma: implications for immunotherapy of a polyomavirus-associated cancer Curr. Oncol. Rep., 13 (2011),pp. 488-497
    [13]
    Brownell, J.E., Sintchak, M.D., Gavin, J.M. et al. Mol. Cell, 37 (2010),pp. 102-111
    [14]
    Carrano, A.C., Eytan, E., Hershko, A. et al. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27 Nat. Cell Biol., 1 (1999),pp. 193-199
    [15]
    Chen, G., Cheng, Y., Martinka, M. et al. Cul1 expression is increased in early stages of human melanoma Pigment Cell Melanoma Res., 23 (2010),pp. 572-574
    [16]
    Chen, G., Cheng, Y., Zhang, Z. et al. Cytoplasmic Skp2 expression is increased in human melanoma and correlated with patient survival PLoS ONE, 6 (2011),p. e17578
    [17]
    Chen, G., Li, G. Increased Cul1 expression promotes melanoma cell proliferation through regulating p27 expression Int. J. Oncol., 37 (2010),pp. 1339-1344
    [18]
    Chen, Q., Xie, W., Kuhn, D.J. et al. Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy Blood, 111 (2008),pp. 4690-4699
    [19]
    Chen, Z.J., Sun, L.J. Nonproteolytic functions of ubiquitin in cell signaling Mol. Cell, 33 (2009),pp. 275-286
    [20]
    Clifford, S.C., Astuti, D., Hooper, L. et al. The pVHL-associated SCF ubiquitin ligase complex: molecular genetic analysis of elongin B and C, Rbx1 and HIF-1alpha in renal cell carcinoma Oncogene, 20 (2001),pp. 5067-5074
    [21]
    Colburn, N.H., Former, B.F., Nelson, K.A. et al. Tumour promoter induces anchorage independence irreversibly Nature, 281 (1979),pp. 589-591
    [22]
    Coussens, L.M., Hanahan, D., Arbeit, J.M. Genetic predisposition and parameters of malignant progression in K14-HPV16 transgenic mice Am. J. Pathol., 149 (1996),pp. 1899-1917
    [23]
    Curiel-Lewandrowski, C., Yamasaki, H., Si, C.P. et al. Loss of nuclear pro-IL-16 facilitates cell cycle progression in human cutaneous T cell lymphoma J. Clin. Invest., 121 (2011),pp. 4838-4849
    [24]
    D'Andrea, A., Pellman, D. Deubiquitinating enzymes: a new class of biological regulators Crit. Rev. Biochem. Mol. Biol., 33 (1998),pp. 337-352
    [25]
    Deshaies, R.J., Joazeiro, C.A. RING domain E3 ubiquitin ligases Annu. Rev. Biochem., 78 (2009),pp. 399-434
    [26]
    Dorrello, N.V., Peschiaroli, A., Guardavaccaro, D. et al. S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth Science, 314 (2006),pp. 467-471
    [27]
    Duan, H., Wang, Y., Aviram, M. et al. SAG, a novel zinc RING finger protein that protects cells from apoptosis induced by redox agents Mol. Cell Biol., 19 (1999),pp. 3145-3155
    [28]
    Duan, S., Skaar, J.R., Kuchay, S. et al. mTOR generates an auto-amplification loop by triggering the betaTrCP- and CK1alpha-dependent degradation of DEPTOR Mol. Cell, 44 (2011),pp. 317-324
    [29]
    Einspahr, J.G., Bowden, G.T., Alberts, D.S. Skin cancer chemoprevention: strategies to save our skin Recent Results Cancer Res., 163 (2003),pp. 151-164
    [30]
    Erickson, L.A., Papotti, M., Volante, M. et al. Merkel cell carcinomas: expression of S-phase kinase-associated protein 2 (Skp2), p27, and proliferation markers Endocr. Pathol., 14 (2003),pp. 221-229
    [31]
    Frescas, D., Pagano, M. Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer Nat. Rev. Cancer, 8 (2008),pp. 438-449
    [32]
    Fuchs, S.Y., Spiegelman, V.S., Kumar, K.G. The many faces of beta-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer Oncogene, 23 (2004),pp. 2028-2036
    [33]
    Gao, D., Inuzuka, H., Tan, M.K. et al. Mol. Cell, 44 (2011),pp. 290-303
    [34]
    Gu, Q., Bowden, G.T., Normolle, D. et al. SAG/ROC2 E3 ligase regulates skin carcinogenesis by stage-dependent targeting of c-Jun/AP1 and IkappaB-alpha/NF-kappaB J. Cell Biol., 178 (2007),pp. 1009-1023
    [35]
    Gu, Q., Tan, M., Sun, Y. SAG/ROC2/Rbx2 is a novel activator protein-1 target that promotes c-Jun degradation and inhibits 12-O-tetradecanoylphorbol-13-acetate-induced neoplastic transformation Cancer Res., 67 (2007),pp. 3616-3625
    [36]
    Hartwell, L.H., Mortimer, R.K., Culotti, J. et al. Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants Genetics, 74 (1973),pp. 267-286
    [37]
    He, H., Gu, Q., Zheng, M. et al. SAG/ROC2/RBX2 E3 ligase promotes UVB-induced skin hyperplasia, but not skin tumors, by simultaneously targeting c-Jun/AP-1 and p27 Carcinogenesis, 29 (2008),pp. 858-865
    [38]
    Hershko, A., Ciechanover, A. The ubiquitin system Annu. Rev. Biochem., 67 (1998),pp. 425-479
    [39]
    Ikeda, F., Dikic, I. Atypical ubiquitin chains: new molecular signals. ‘Protein modifications: beyond the usual suspects’ review series EMBO Rep., 9 (2008),pp. 536-542
    [40]
    Ishikawa, Y., Hosogane, M., Okuyama, R. et al. Opposing functions of Fbxw7 in keratinocyte growth, differentiation and skin tumorigenesis mediated through negative regulation of c-Myc and Notch Oncogene (2012)
    [41]
    Jia, L., Li, H., Sun, Y. Induction of p21-dependent senescence by an NAE inhibitor, MLN4924, as a mechanism of growth suppression Neoplasia, 13 (2011),pp. 561-569
    [42]
    Jia, L., Soengas, M.S., Sun, Y. ROC1/RBX1 E3 ubiquitin ligase silencing suppresses tumor cell growth via sequential induction of G2-M arrest, apoptosis, and senescence Cancer Res., 69 (2009),pp. 4974-4982
    [43]
    Jia, L., Sun, Y. SCF E3 ubiquitin ligases as anticancer targets Curr. Cancer Drug Targets, 11 (2011),pp. 347-356
    [44]
    Jia, L., Yang, J., Hao, X. et al. Validation of SAG/RBX2/ROC2 E3 ubiquitin ligase as an anticancer and radiosensitizing target Clin. Cancer Res., 16 (2010),pp. 814-824
    [45]
    Jin, J., Cardozo, T., Lovering, R.C. et al. Systematic analysis and nomenclature of mammalian F-box proteins Genes Dev., 18 (2004),pp. 2573-2580
    [46]
    Kamura, T., Conrad, M.N., Yan, Q. et al. The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2 Genes Dev., 13 (1999),pp. 2928-2933
    [47]
    Katagiri, Y., Hozumi, Y., Kondo, S. J. Dermatol. Sci., 42 (2006),pp. 215-224
    [48]
    Kipreos, E.T., Lander, L.E., Wing, J.P. et al. Cell, 85 (1996),pp. 829-839
    [49]
    Koch, U., Radtke, F. Notch and cancer: a double-edged sword Cell. Mol. Life Sci., 64 (2007),pp. 2746-2762
    [50]
    Koike, J., Sagara, N., Kirikoshi, H. et al. Molecular cloning and genomic structure of the betaTRCP2 gene on chromosome 5q35.1 Biochem. Biophys. Res. Commun., 269 (2000),pp. 103-109
    [51]
    Leiter, U., Garbe, C. Epidemiology of melanoma and nonmelanoma skin cancer–the role of sunlight Adv. Exp. Med. Biol., 624 (2008),pp. 89-103
    [52]
    Li, Q., Murphy, M., Ross, J. et al. Skp2 and p27kip1 expression in melanocytic nevi and melanoma: an inverse relationship J. Cutan. Pathol., 31 (2004),pp. 633-642
    [53]
    Lin, H.K., Chen, Z., Wang, G. et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence Nature, 464 (2010),pp. 374-379
    [54]
    Lin, J.J., Milhollen, M.A., Smith, P.G. et al. NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells Cancer Res., 70 (2010),pp. 10310-10320
    [55]
    Liu, J., Suresh Kumar, K.G., Yu, D. et al. Oncogenic BRAF regulates beta-Trcp expression and NF-kappaB activity in human melanoma cells Oncogene, 26 (2007),pp. 1954-1958
    [56]
    Liu, L., Lee, S., Zhang, J. et al. CUL4A abrogation augments DNA damage response and protection against skin carcinogenesis Mol. Cell, 34 (2009),pp. 451-460
    [57]
    Luo, Z., Yu, G., Lee, H.W. et al. The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth Cancer Res., 72 (2012),pp. 3360-3371
    [58]
    Mao, J.H., Perez-Losada, J., Wu, D. et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene Nature, 432 (2004),pp. 775-779
    [59]
    Margottin, F., Bour, S.P., Durand, H. et al. A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif Mol. Cell, 1 (1998),pp. 565-574
    [60]
    Mathias, N., Johnson, S.L., Winey, M. et al. Cdc53p acts in concert with Cdc4p and Cdc34p to control the G1-to-S-phase transition and identifies a conserved family of proteins Mol. Cell. Biol., 16 (1996),pp. 6634-6643
    [61]
    Miele, L. Notch signaling Clin. Cancer Res., 12 (2006),pp. 1074-1079
    [62]
    Milhollen, M.A., Narayanan, U., Soucy, T.A. et al. Inhibition of NEDD8-activating enzyme induces rereplication and apoptosis in human tumor cells consistent with deregulating CDT1 turnover Cancer Res., 71 (2011),pp. 3042-3051
    [63]
    Milhollen, M.A., Traore, T., Adams-Duffy, J. et al. MLN4924, a NEDD8-activating enzyme inhibitor, is active in diffuse large B-cell lymphoma models: rationale for treatment of NF-kappaB-dependent lymphoma Blood, 116 (2010),pp. 1515-1523
    [64]
    Mo, J.S., Kim, M.Y., Han, S.O. et al. Integrin-linked kinase controls Notch1 signaling by down-regulation of protein stability through Fbw7 ubiquitin ligase Mol. Cell. Biol., 27 (2007),pp. 5565-5574
    [65]
    Munger, K., Scheffner, M., Huibregtse, J.M. et al. Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products Cancer Surv., 12 (1992),pp. 197-217
    [66]
    Nai, G., Marques, M. Role of ROC1 protein in the control of cyclin D1 protein expression in skin melanomas Pathol. Res. Pract., 207 (2011),pp. 174-181
    [67]
    Nakayama, K.I., Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer Nat. Rev. Cancer, 6 (2006),pp. 369-381
    [68]
    Nalepa, G., Rolfe, M., Harper, J.W. Drug discovery in the ubiquitin-proteasome system Nat. Rev. Drug Discov., 5 (2006),pp. 596-613
    [69]
    Nawrocki, S.T., Griffin, P., Kelly, K.R. et al. MLN4924: a novel first-in-class inhibitor of NEDD8-activating enzyme for cancer therapy Expert Opin. Investig. Drugs, 21 (2012),pp. 1563-1573
    [70]
    Nicolas, M., Wolfer, A., Raj, K. et al. Notch1 functions as a tumor suppressor in mouse skin Nat. Genet., 33 (2003),pp. 416-421
    [71]
    Ohta, T., Michel, J.J., Schottelius, A.J. et al. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity Mol. Cell, 3 (1999),pp. 535-541
    [72]
    Orlicky, S., Tang, X., Neduva, V. et al. An allosteric inhibitor of substrate recognition by the SCF(Cdc4) ubiquitin ligase Nat. Biotechnol., 28 (2010),pp. 733-737
    [73]
    Penin, R.M., Fernandez-Figueras, M.T., Puig, L. et al. Over-expression of p45(SKP2) in Kaposi's sarcoma correlates with higher tumor stage and extracutaneous involvement but is not directly related to p27(KIP1) down-regulation Mod. Pathol., 15 (2002),pp. 1227-1235
    [74]
    Perez-Losada, J., Wu, D., DelRosario, R. et al. Allele-specific deletions in mouse tumors identify Fbxw7 as germline modifier of tumor susceptibility PLoS ONE, 7 (2012),p. e31301
    [75]
    Peterson, T.R., Laplante, M., Thoreen, C.C. et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival Cell, 137 (2009),pp. 873-886
    [76]
    Reifenberger, J., Knobbe, C.B., Wolter, M. et al. Molecular genetic analysis of malignant melanomas for aberrations of the WNT signaling pathway genes CTNNB1, APC, ICAT and BTRC Int. J. Cancer, 100 (2002),pp. 549-556
    [77]
    Ribatti, D., Nico, B., Crivellato, E. et al. The history of the angiogenic switch concept Leukemia, 21 (2007),pp. 44-52
    [78]
    Rosso, S., Zanetti, R., Pippione, M. et al. Parallel risk assessment of melanoma and basal cell carcinoma: skin characteristics and sun exposure Melanoma Res., 8 (1998),pp. 573-583
    [79]
    Saladi, R.N., Persaud, A.N. The causes of skin cancer: a comprehensive review Drugs Today (Barc), 41 (2005),pp. 37-53
    [80]
    Salehi-Tabar, R., Nguyen-Yamamoto, L., Tavera-Mendoza, L.E. et al. Vitamin D receptor as a master regulator of the c-MYC/MXD1 network Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 18827-18832
    [81]
    Salon, C., Brambilla, E., Brambilla, C. et al. Altered pattern of Cul-1 protein expression and neddylation in human lung tumours: relationships with CAND1 and cyclin E protein levels J. Pathol., 213 (2007),pp. 303-310
    [82]
    Sarikas, A., Hartmann, T., Pan, Z.Q. The cullin protein family Genome Biol., 12 (2011),p. 220
    [83]
    Schmid, T., Jansen, A.P., Baker, A.R. et al. Translation inhibitor Pdcd4 is targeted for degradation during tumor promotion Cancer Res., 68 (2008),pp. 1254-1260
    [84]
    Seol, J.H., Feldman, R.M.R., Zachariae, W.Z. et al. Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34 Genes Dev., 13 (1999),pp. 1614-1626
    [85]
    Serres, M.P., Zlotek-Zlotkiewicz, E., Concha, C. et al. Oncogene, 30 (2011)
    [86]
    Siegel, R., DeSantis, C., Virgo, K. et al. Cancer treatment and survivorship statistics, 2012 CA Cancer J. Clin., 62 (2012),pp. 220-241
    [87]
    Sistrunk, C., Macias, E., Nakayama, K. et al. Skp2 is necessary for Myc-induced keratinocyte proliferation but dispensable for Myc oncogenic activity in the oral epithelium Am. J. Pathol., 178 (2011),pp. 2470-2477
    [88]
    Skaar, J.R., D'Angiolella, V., Pagan, J.K. et al. SnapShot: F box proteins II Cell, 137 (2009),p. 1358 e1
    [89]
    Soucy, T.A., Dick, L.R., Smith, P.G. et al. The NEDD8 Conjugation Pathway and Its Relevance in Cancer Biology and Therapy Genes Cancer, 1 (2010),pp. 708-716
    [90]
    Soucy, T.A., Smith, P.G., Milhollen, M.A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer Nature, 458 (2009),pp. 732-736
    [91]
    Sumimoto, H., Hirata, K., Yamagata, S. et al. Effective inhibition of cell growth and invasion of melanoma by combined suppression of BRAF (V599E) and Skp2 with lentiviral RNAi Int. J. Cancer, 118 (2006),pp. 472-476
    [92]
    Sun, Y. E3 ubiquitin ligases as cancer targets and biomarkers Neoplasia, 8 (2006),pp. 645-654
    [93]
    Sun, Y., Hegamyer, G., Colburn, N.H. Molecular cloning of five messenger RNAs differentially expressed in preneoplastic or neoplastic JB6 mouse epidermal cells: one is homologous to human tissue inhibitor of metalloproteinases-3 Cancer Res., 54 (1994),pp. 1139-1144
    [94]
    Sun, Y., Li, H. Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase Protein Cell (2012)
    [95]
    Sun, Y., Tan, M., Duan, H. et al. SAG/ROC/Rbx/Hrt, a zinc RING finger gene family: molecular cloning, biochemical properties, and biological functions Antioxid. Redox Signal., 3 (2001),pp. 635-650
    [96]
    Sutterluty, H., Chatelain, E., Marti, A. et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells Nat. Cell Biol., 1 (1999),pp. 207-214
    [97]
    Swaroop, M., Bian, J., Aviram, M. et al. Expression, purification, and biochemical characterization of SAG, a RING finger redox sensitive protein Free Radic. Biol. Med., 27 (1999),pp. 193-202
    [98]
    Swaroop, M., Wang, Y., Miller, P. et al. Yeast homolog of human SAG/ROC2/Rbx2/Hrt2 is essential for cell growth, but not for germination: Chip profiling implicates its role in cell cycle regulation Oncogene, 19 (2000),pp. 2855-2866
    [99]
    Swords, R.T., Kelly, K.R., Smith, P.G. et al. Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia Blood, 115 (2010),pp. 3796-3800
    [100]
    Tan, M., Gallegos, J.R., Gu, Q. et al. SAG/ROC-SCFbeta-TrCP E3 ubiquitin ligase promotes pro-caspase-3 degradation as a mechanism of apoptosis protection Neoplasia, 8 (2006),pp. 1042-1054
    [101]
    Tan, M., Gu, Q., He, H. et al. SAG/ROC2/RBX2 is a HIF-1 target gene that promotes HIF-1alpha ubiquitination and degradation Oncogene, 27 (2008),pp. 1404-1411
    [102]
    Tan, M., Li, Y., Yang, R. et al. Inactivation of SAG E3 ubiquitin ligase blocks embryonic stem cell differentiation and sensitizes leukemia cells to retinoid acid PLoS ONE, 6 (2011),p. e27726
    [103]
    Tan, M., Zhao, Y., Kim, S.J. et al. SAG/RBX2/ROC2 E3 ubiquitin ligase is essential for vascular and neural development by targeting NF1 for degradation Dev. Cell, 21 (2011),pp. 1062-1076
    [104]
    Tan, M., Zhu, Y., Kovacev, J. et al. Disruption of Sag/Rbx2/Roc2 induces radiosensitization by increasing ROS levels and blocking NF-kB activation in mouse embryonic stem cells Free Radic. Biol. Med., 49 (2010),pp. 976-983
    [105]
    Tan, P., Fuchs, S.Y., Chen, A. et al. Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of IkBa Mol. Cell, 3 (1999),pp. 527-533
    [106]
    Tsvetkov, L.M., Yeh, K.-H., Lee, S.-J. et al. Curr. Biol., 9 (1999),pp. 661-664
    [107]
    Vaid, M., Prasad, R., Sun, Q. et al. Silymarin targets beta-catenin signaling in blocking migration/invasion of human melanoma cells PLoS ONE, 6 (2011),p. e23000
    [108]
    Wang, Y., Dai, D.L., Martinka, M. et al. Prognostic significance of nuclear ING3 expression in human cutaneous melanoma Clin. Cancer Res., 13 (2007),pp. 4111-4116
    [109]
    Wang, Z., Inuzuka, H., Zhong, J. et al. Tumor suppressor functions of FBW7 in cancer development and progression FEBS Lett., 586 (2012),pp. 1409-1418
    [110]
    Wei, D., Sun, Y. Small RING finger proteins RBX1 and RBX2 of SCF E3 ubiquitin ligases: the role in cancer and as cancer targets Genes Cancer, 1 (2010),pp. 700-707
    [111]
    Welcker, M., Clurman, B.E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation Nat. Rev. Cancer, 8 (2008),pp. 83-93
    [112]
    Woenckhaus, C., Maile, S., Uffmann, S. et al. Expression of Skp2 and p27KIP1 in naevi and malignant melanoma of the skin and its relation to clinical outcome Histol. Histopathol., 20 (2005),pp. 501-508
    [113]
    Wolter, M., Scharwachter, C., Reifenberger, J. et al. Absence of detectable alterations in the putative tumor suppressor gene BTRC in cerebellar medulloblastomas and cutaneous basal cell carcinomas Acta Neuropathol., 106 (2003),pp. 287-290
    [114]
    Wu, K., Fuchs, S.Y., Chen, A. et al. The SCF(HOS/beta-TRCP)-ROC1 E3 ubiquitin ligase utilizes two distinct domains within CUL1 for substrate targeting and ubiquitin ligation Mol. Cell. Biol., 20 (2000),pp. 1382-1393
    [115]
    Yang, D., Li, L., Liu, H. et al. Induction of autophagy and senescence by knockdown of ROC1 E3 ubiquitin ligase to suppress the growth of liver cancer cells Cell Death Differ., 20 (2013),pp. 235-247
    [116]
    Ye, Y., Rape, M. Building ubiquitin chains: E2 enzymes at work Nat. Rev. Mol. Cell Biol., 10 (2009),pp. 755-764
    [117]
    Zhang, G., Li, G. Novel multiple markers to distinguish melanoma from dysplastic nevi PLoS ONE, 7 (2012),p. e45037
    [118]
    Zhang, H., Kobayashi, R., Galaktionov, K. et al. p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase Cell, 82 (1995),pp. 915-925
    [119]
    Zhao, Y., Sun, Y. Cullin-RING ligases (CRLs) as attractive anti-cancer targets Curr. Pharm. Des (2012)
    [120]
    Zhao, Y., Sun, Y. Targeting the mTOR-DEPTOR pathway by CRL E3 ubiquitin ligases: therapeutic application Neoplasia, 14 (2012),pp. 360-367
    [121]
    Zhao, Y., Xiong, X., Jia, L. et al. Targeting Cullin-RING ligases by MLN4924 induces autophagy via modulating the HIF1-REDD1-TSC1-mTORC1-DEPTOR axis Cell Death Dis., 3 (2012),p. e386
    [122]
    Zhao, Y., Xiong, X., Sun, Y. DEPTOR, an mTOR Inhibitor, is a physiological substrate of SCFβTrCP E3 ubiquitin ligase and regulates survival and autophagy Mol. Cell, 44 (2011),pp. 304-316
    [123]
    Zheng, N., Schulman, B.A., Song, L. et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex Nature, 416 (2002),pp. 703-709
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (91) PDF downloads (8) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return