5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 1
Jan.  2013
Turn off MathJax
Article Contents

Technology-Driven and Evidence-Based Genomic Analysis for Integrated Pediatric and Prenatal Genetics Evaluation

doi: 10.1016/j.jgg.2012.12.004
More Information
  • Corresponding author: E-mail address: peining.li@yale.edu (Peining Li)
  • Received Date: 2012-09-01
  • Accepted Date: 2012-12-14
  • Available Online: 2012-12-27
  • Publish Date: 2013-01-20
  • The first decade since the completion of the Human Genome Project has been marked with rapid development of genomic technologies and their immediate clinical applications. Genomic analysis using oligonucleotide array comparative genomic hybridization (aCGH) or single nucleotide polymorphism (SNP) chips has been applied to pediatric patients with developmental and intellectual disabilities (DD/ID), multiple congenital anomalies (MCA) and autistic spectrum disorders (ASD). Evaluation of analytical and clinical validities of aCGH showed > 99% sensitivity and specificity and increased analytical resolution by higher density probe coverage. Reviews of case series, multi-center comparison and large patient-control studies demonstrated a diagnostic yield of 12%–20%; approximately 60% of these abnormalities were recurrent genomic disorders. This pediatric experience has been extended toward prenatal diagnosis. A series of reports indicated approximately 10% of pregnancies with ultrasound-detected structural anomalies and normal cytogenetic findings had genomic abnormalities, and 30% of these abnormalities were syndromic genomic disorders. Evidence-based practice guidelines and standards for implementing genomic analysis and web-delivered knowledge resources for interpreting genomic findings have been established. The progress from this technology-driven and evidence-based genomic analysis provides not only opportunities to dissect disease-causing mechanisms and develop rational therapeutic interventions but also important lessons for integrating genomic sequencing into pediatric and prenatal genetic evaluation.
  • loading
  • [1]
    ACMG Board of Directors Points to consider in the clinical application of genomic sequencing Genet. Med., 14 (2012),pp. 759-761
    [2]
    ACOG Committee Opinion No. 446 Array comparative genomic hybridization in prenatal diagnosis Obstet. Gynecol., 114 (2009),pp. 1161-1163
    [3]
    Aradhya, S., Lewis, R., Bonaga, T. et al. Exon-level array CGH in a large clinical cohort demonstrates increased sensitivity of diagnostic testing for Mendelian disorders Genet. Med., 14 (2012),pp. 594-603
    [4]
    Baldwin, E.L., Lee, J.Y., Blake, D.M. et al. Enhanced detection of clinically relevant genomic imbalances using a targeted plus whole genome oligonucleotide microarray Genet. Med., 10 (2008),pp. 415-429
    [5]
    Ballif, B.C., Rorem, E.A., Sundin, K. et al. Detection of low-level mosaicism by array CGH in routine diagnostic specimens Am. J. Med. Genet., 140A (2006),pp. 2757-2767
    [6]
    Baptista, J., Mercer, C., Prigmore, E. et al. Breakpoint mapping and array CGH in translocations: comparison of a phenotypically normal and an abnormal cohort Am. J. Hum. Genet., 82 (2008),pp. 927-936
    [7]
    Benn, P.A., Egan, J.F., Fang, M. et al. Changes in the utilization of prenatal diagnosis Obstet. Gynecol., 103 (2004),pp. 1255-1260
    [8]
    Boone, P.M., Bacino, C.A., Shaw, C.A. et al. Detection of clinically relevant exonic copy-number changes by array CGH Hum. Mutat., 31 (2010),pp. 1326-1342
    [9]
    Brothman, A.R., Schneider, N.R., Saikevych, I. et al. Cytogenetic heteromorphisms: survey results and reporting practices of giemsa-band regions that we have pondered for years Arch. Pathol. Lab. Med., 130 (2006),pp. 947-949
    [10]
    Brothman, A.R., Dolan, M.M., Goodman, B.K. et al. College of American Pathologists/American College of Medical Genetics proficiency testing for constitutional cytogenomic microarray analysis Genet. Med., 13 (2011),pp. 765-769
    [11]
    Brownstein, C.A., Adler, F., Nelson-Williams, C. et al. A translocation causing increased α-klotho level results in hypophosphatemic rickets and hyperparathyroidism Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 3455-3460
    [12]
    Cheung, S.W., Shaw, C.A., Yu, W. et al. Development and validation of aCGH microarray for clinical cytogenetic diagnosis Genet. Med., 7 (2005),pp. 422-432
    [13]
    Cheung, S.W., Shaw, C.A., Scott, D.A. et al. Microarray-based CGH detects chromosomal mosaicism not revealed by conventional cytogenetics Am. J. Med. Genet., 143A (2007),pp. 1679-1686
    [14]
    Cooper, G.M., Coe, B.P., Girirajan, S. et al. A copy number variation morbidity map of developmental delay Nat. Genet., 43 (2011),pp. 838-846
    [15]
    Coulter, M.E., Miller, D.T., Harris, D.J. et al. Chromosomal microarray testing influences medical management Genet. Med., 13 (2011),pp. 770-776
    [16]
    Coppinger, J., Alliman, S., Lamb, A.N. et al. Whole-genome microarray analysis in prenatal specimens identifies clinically significant chromosome alterations without increase in results of unclear significance compared to targeted microarray Prenatal. Diag., 29 (2009),pp. 1156-1166
    [17]
    Corpas, M., Bragin, E., Clayton, S. et al. Interpretation of Genomic Copy Number Variants Using DECIPHER Curr. Protoc. Hum. Genet., 8 (2012),pp. 8.14.1-8.14.17
    [18]
    Cubells, J.F., Deoreo, E.H., Harvey, P.D. et al. Pharmaco-genetically guided treatment of recurrent rage outbursts in an adult male with 15q13.3 deletion syndrome Am. J. Med. Genet., 155A (2011),pp. 805-810
    [19]
    D'Amours, G., Kibar, Z., Mathonnet, G. et al. Whole-genome array CGH identifies pathogenic copy number variations in fetuses with major malformations and a normal karyotype Clin. Genet., 81 (2011),pp. 128-141
    [20]
    Darilek, S., Ward, P., Pursley, A. et al. Pre- and postnatal genetic testing by array-comparative genomic hybridization: genetic counseling perspectives Genet. Med., 10 (2008),pp. 13-18
    [21]
    De Gregori, M., Ciccone, R., Magini, P. et al. Cryptic deletions are a common finding in ‘‘balanced’’ reciprocal and complex chromosome rearrangements: a study of 59 patients J. Med. Genet., 44 (2007),pp. 750-762
    [22]
    Donnelly, M.P., Paschou, P., Grigorenko, E. et al. The distribution and most recent common ancestor of the 17q21 inversion in humans Am. J. Hum. Genet., 86 (2010),pp. 161-171
    [23]
    Duncan, A., Langlois, S., SOGC Genetics Committee, CCMG Prenatal Diagnosis Committee Use of array genomic hybridization technology in prenatal diagnosis in Canada J. Obstet. Gynaecol. Can., 33 (2011),pp. 1256-1259
    [24]
    Evangelidou, P., Sismani, C., Ioannides, M. et al. Clinical application of whole-genome array CGH during prenatal diagnosis: study of 25 selected pregnancies with abnormal ultrasound findings or apparently balanced structural aberrations Mol. Cytogenet., 3 (2010),p. 24
    [25]
    Faas, B.H., van der Burgt, I., Kooper, A.J. et al. Identification of clinically significant, submicroscopic chromosome alterations and UPD in fetuses with ultrasound anomalies using genome-wide 250k SNP array analysis J. Med. Genet., 47 (2010),pp. 586-594
    [26]
    Fan, H.C., Gu, W., Wang, J. et al. Non-invasive prenatal measurement of the fetal genome Nature, 487 (2012),pp. 320-324
    [27]
    Fiorentino, F., Caiazzo, F., Napolitano, S. et al. Introducing array comparative genomic hybridization into routine prenatal diagnosis practice: a prospective study on over 1000 consecutive clinical cases Prenatal. Diag., 31 (2011),pp. 1270-1282
    [28]
    Friedman, J.M., Baross, A., Delaney, A.D. et al. Oligonucleotide micro array analysis of genomic imbalances in children with mental retardation Am. J. Hum. Genet., 79 (2006),pp. 500-513
    [29]
    Friedman, J.M. High-resolution array genomic hybridization in prenatal diagnosis Prenatal. Diag., 29 (2009),pp. 20-28
    [30]
    Fruhman, G., Van den Veyver, I.B. Applications of array comparative genomic hybridization in obstetrics Obstet. Gynecol. Clin. North. Am., 37 (2010),pp. 71-85
    [31]
    Golzio, C., Willer, J., Talkowski, M.E. et al. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant Nature, 485 (2012),pp. 363-367
    [32]
    Gonzaga-Jauregui, C., Lupski, J.R., Gibbs, R.A. Human genome sequencing in health and disease Annu. Rev. Med., 63 (2012),pp. 35-61
    [33]
    Guilherme, R.S., Meloni, V.F., Kim, C.A. et al. Mechanisms of ring chromosome formation, ring instability and clinical consequences BMC Med. Genet., 12 (2011),p. 171
    [34]
    Higgins, A.W., Alkuraya, F.S., Bosco, A.F. et al. Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project Am. J. Hum. Genet., 82 (2008),pp. 712-722
    [35]
    Hillman, S.C., Pretlove, S., Coomarasamy, A. et al. Additional information from array comparative genomic hybridization technology over conventional karyotyping in prenatal diagnosis: a systematic review and meta-analysis Ultrasound Obstet. Gynecol., 37 (2011),pp. 6-14
    [36]
    Holtzman, N.A., Watson, M.S.
    [37]
    Horev, G., Ellegood, J., Lerch, J.P. et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 17076-17081
    [38]
    Iafrate, A.J., Feuk, L., Rivera, M.N. et al. Detection of large-scale variation in the human genome Nat. Genet., 36 (2004),pp. 949-951
    [39]
    Jacquemont, S., Reymond, A., Zufferey, F. et al. Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus Nature, 478 (2011),pp. 97-102
    [40]
    Kallioniemi, A., Kallioniemi, O.P., Sudar, D. et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors Science, 258 (1992),pp. 818-821
    [41]
    Kaminsky, E.B., Kaul, V., Paschall, J. et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities Genet. Med., 13 (2011),pp. 777-784
    [42]
    Kearney, H.M., Thorland, E.C., Brown, K.K. et al. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants Genet. Med., 13 (2011),pp. 680-685
    [43]
    Kearney, H.M., South, S.T., Wolff, D.J. et al. American College of Medical Genetics recommendations for the design and performance expectations for clinical genomic copy number microarrays intended for use in the postnatal setting for detection of constitutional abnormalities Genet. Med., 13 (2011),pp. 676-679
    [44]
    Khattab, M., Xu, F., Li, P. et al. Am. J. Med. Genet., 155A (2011),pp. 3082-3086
    [45]
    Kinde, I., Papadopoulos, N., Kinzler, K.W. et al. FAST-SeqS: a simple and efficient method for the detection of aneuploidy by massively parallel sequencing PLoS ONE, 7 (2012),p. e41162
    [46]
    Koolen, D.A., Vissers, L.E., Pfundt, R. et al. A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism Nat. Genet., 38 (2006),pp. 999-1001
    [47]
    Le Caignec, C., Boceno, M., Saugier-Veber, P. et al. Detection of genomic imbalances by array based comparative genomic hybridisation in fetuses with multiple malformations J. Med. Genet., 42 (2005),pp. 121-128
    [48]
    Ledbetter, D.H., Martin, C.L. Cryptic telomere imbalance: a 15-year update Am. J. Med. Genet., 145C (2007),pp. 327-334
    [49]
    Lee, C., Iafrate, A.J., Brothman, A.R. Copy number variations and clinical cytogenetic diagnosis of constitutional disorders Nat. Genet., 39 (2007),pp. S48-S54
    [50]
    Lee, C.N., Lin, S.Y., Lin, C.H. et al. Clinical utility of array comparative genomic hybridisation for prenatal diagnosis: a cohort study of 3171 pregnancies Br. J. Obstet. Gynecol., 119 (2012),pp. 614-625
    [51]
    Leung, T.Y., Vogel, I., Lau, T.K. et al. Identification of submicroscopic chromosomal aberrations in fetuses with increased nuchal translucency and an apparently normal karyotype Ultrasound Obstet. Gynecol., 38 (2011),pp. 314-319
    [52]
    Li, P., Zhang, H.Z., Huff, S. et al. Am. J. Med. Genet., 140A (2006),pp. 2721-2729
    [53]
    Li, P., Pomianowski, P., DiMaio, S.M. et al. Genomic characterization of prenatally detected chromosomal structural abnormalities using oligonucleotide array comparative genomic hybridization Am. J. Med. Genet., 155A (2011),pp. 1605-1615
    [54]
    Lo, Y.M., Chan, K.C., Sun, H. et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus Sci. Transl. Med., 61 (2010)
    [55]
    Lo, Y.M., Chiu, R.W. Genomic analysis of fetal nuclei acids in maternal blood Annu. Rev. Genom. Hum. Genet., 13 (2012),pp. 10.2-10.22
    [56]
    Manning, M., Hudgins, L., Professional Practice and Guidelines Committee Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities Genet. Med., 12 (2010),pp. 742-745
    [57]
    Maya, I., Davidov, B., Gershovitz, L. et al. Diagnostic utility of array-based comparative genomic hybridization (aCGH) in a prenatal setting Prenatal. Diag., 30 (2010),pp. 1131-1137
    [58]
    Miller, D.T., Adam, M.P., Aradhya, S. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies Am. J. Hum. Genet., 86 (2010),pp. 749-764
    [59]
    Neill, N.J., Torchia, B.S., Bejjani, B.A. et al. Comparative analysis of copy number detection by whole-genome BAC and oligonucleotide array CGH Mol. Cytogenet., 3 (2010),p. 11
    [60]
    Ning, Y., Roschke, A., Smith, A.C. et al. A complete set of human telomeric probes and their clinical application Nat. Genet., 14 (1996),pp. 86-89
    [61]
    Paciorkowski, A.R., Fang, M. Chromosomal microarray interpretation: what is a child neurologist to do? Pediatr. Neurol., 41 (2009),pp. 391-398
    [62]
    Palomaki, G.E., Kloza, E.M., Lambert-Messerlian, G.M. et al. DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study Genet. Med., 13 (2011),pp. 913-920
    [63]
    Palomaki, G.E., Deciu, C., Kloza, E.M. et al. DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: an international collaborative study Genet. Med., 14 (2012),pp. 296-305
    [64]
    Papenhausen, P., Schwartz, S., Risheg, H. et al. UPD detection using homozygosity profiling with a SNP genotyping microarray Am. J. Med. Genet., 155A (2011),pp. 757-768
    [65]
    Pinkel, D., Segraves, R., Sudar, D. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays Nat. Genet., 20 (1998),pp. 207-211
    [66]
    Redon, R., Ishikawa, S., Fitch, K.R. et al. Global variation in copy number in the human genome Nature, 444 (2006),pp. 444-454
    [67]
    Ried, T., Landes, G., Dackowski, W. et al. Multicolor fluorescence in situ hybridization for the simultaneous detection of probe sets for chromosomes 13, 18, 21, X and Y in uncultured amniotic fluid cells Hum. Mol. Genet., 5 (1992),pp. 307-313
    [68]
    Riggs, E.R., Church, D.M., Hanson, K. et al. Towards an evidence-based process for the clinical interpretation of copy number variation Clin. Genet., 19 (2011),pp. 1-10
    [69]
    Rossi, M.R., DiMaio, M., Xiang, B. et al. Clinical and genomic characterization of distal duplications and deletions of chromosome 4q: study of two cases and review of the literature Am. J. Med. Genet., 149A (2009),pp. 2788-2794
    [70]
    Savage, M.S., Mourad, M.J., Wapner, R.J. Evolving applications of microarray analysis in prenatal diagnosis Curr. Opin. Obstet. Gynecol., 23 (2011),pp. 103-108
    [71]
    Schaaf, C.P., Wiszniewska, J., Beaudet, A.L. Copy number and SNP arrays in clinical diagnostics Annu. Rev. Genom. Hum. Genet., 12 (2011),pp. 25-51
    [72]
    Schena, M., Shalon, D., Davis, R.W. et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray Science, 270 (1995),pp. 467-470
    [73]
    Schoumans, J., Ruivenkamp, C., Holmberg, E. et al. Detection of chromosomal imbalances in children with idiopathic mental retardation by array based comparative genomic hybridization (array-CGH) J. Med. Genet., 42 (2005),pp. 699-705
    [74]
    Shaffer, L.G., American College of Medical Genetics Professional Practice and Guidelines Committee American College of Medical Genetics guideline on the cytogenetic evaluation of the individual with developmental delay or mental retardation Genet. Med., 7 (2005),pp. 650-654
    [75]
    Shaffer, L.G., Beaudet, A.L., Brothman, A.R. et al. Microarray analysis for constitutional cytogenetic abnormalities Genet. Med., 9 (2007),pp. 654-662
    [76]
    Shaw-Smith, C., Redon, R., Rickman, L. et al. Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features J. Med. Genet., 41 (2004),pp. 241-248
    [77]
    Shaw-Smith, C., Pittman, A.M., Willatt, L. et al. Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability Nat. Genet., 38 (2006),pp. 1032-1037
    [78]
    Shearer, B.M., Thorland, E.C., Gonzales, P.R. et al. Evaluation of a commercially available focused aCGH platform for the detection of constitutional chromosome anomalies Am. J. Med. Genet., 143A (2007),pp. 2357-2370
    [79]
    Shen, Y., Irons, M., Miller, D.T. et al. Development of a focused oligonucleotide-array comparative genomic hybridization chip for clinical diagnosis of genomic imbalance Clin. Chem., 53 (2007),pp. 2051-2059
    [80]
    Smeets, D.F.C.M. Historical prospective of human cytogenetics: from microscope to microarray Clin. Biochem., 37 (2004),pp. 439-446
    [81]
    Snijders, A.M., Nowak, N., Segraves, R. et al. Assembly of microarrays for genome-wide measurement of DNA copy number Nat. Genet., 29 (2001),pp. 263-264
    [82]
    Tsuchiya, K.D., Shaffer, L.G., Aradhya, S. et al. Variability in interpreting and reporting copy number changes detected by array-based technology in clinical laboratories Genet. Med., 11 (2009),pp. 866-873
    [83]
    Tucker, T., Schlade-Bartusiak, K., Eydoux, P. et al. Uniparental disomy: can SNP array data be used for diagnosis? Genet. Med., 14 (2012),pp. 753-756
    [84]
    Tyreman, M., Abbott, K.M., Willatt, L.R. et al. High resolution array analysis: diagnosing pregnancies with abnormal ultrasound findings J. Med. Genet., 46 (2009),pp. 531-541
    [85]
    Valduga, M., Philippe, C., Segura, B.P. et al. A retrospective study by oligonucleotide array-CGH analysis in 50 fetuses with multiple malformations Prenatal. Diag., 30 (2010),pp. 333-341
    [86]
    Van den Veyver, I.B., Patel, A., Shaw, C.A. et al. Clinical use of array comparative genomic hybridization (aCGH) for prenatal diagnosis in 300 cases Prenatal. Diag., 29 (2009),pp. 29-39
    [87]
    Vialard, F., Molina-Gomes, D., Leroy, B. et al. Array comparative genomic hybridization in prenatal diagnosis: another experience Fetal Diagn. Ther., 25 (2009),pp. 277-284
    [88]
    Vissers, L.E., de Vries, B.B., Osoegawa, K. et al. Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities Am. J. Hum. Genet., 73 (2003),pp. 1261-1270
    [89]
    Wyandt, H.E., Tonk, V.S.
    [90]
    Xiang, B., Li, A., Valentin, D. et al. Analytical and clinical validity of whole genome oligonucleotide array comparative genomic hybridization for pediatric patients with mental retardation and developmental delay Am. J. Med. Genet., 146A (2008),pp. 1942-1954
    [91]
    Xiang, B., Zhu, H., Shen, Y. et al. Genome-wide oligonucleotide array CGH for etiological diagnosis of mental retardation: A multi-center experience of 1,499 clinical cases J. Mol. Diagn., 12 (2010),pp. 204-212
    [92]
    Xu, F., Li, L., Schulz, V.P. et al.
    [93]
    Yu, S., Bittel, D.C., Kibiryeva, N. et al. Validation of the Agilent 244K oligonucleotide array-based comparative genomic hybridization platform for clinical cytogenetic diagnosis Am. J. Clin. Pathol., 132 (2009),pp. 349-360
    [94]
    Yu, S., Fiedler, S.D., Brawner, S.J. et al. Characterizing small supernumerary marker chromosomes with combination of multiple techniques Cytogenet. Genome Res., 136 (2012),pp. 6-14
    [95]
    Yu, W., Ballif, B.C., Kashork, C.D. et al. Development of a comparative genomic hybridization microarray and demonstration of its utility with 25 well-characterized 1p36 deletions Hum. Mol. Genet., 12 (2003),pp. 2145-2152
    [96]
    Zhang, H.Z., Xu, F., Seashore, M. et al. Unique genomic structure and distinct mitotic behavior of ring chromosome 21 in two unrelated cases Cytogenet. Genome Res., 136 (2012),pp. 180-187
    [97]
    Zhang, Z.F., Ruivenkamp, C., Staaf, J. et al. Detection of submicroscopic constitutional chromosome aberrations in clinical diagnostics: a validation of the practical performance of different array platforms Eur. J. Hum. Genet., 16 (2008),pp. 786-792
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (120) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return