[1] |
Aarts, N., Metz, M., Holub, E. et al. Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 10306-10311
|
[2] |
Aerts, A.M., Thevissen, K., Bresseleers, S.M. et al. Plant Cell Rep., 26 (2007),pp. 1391-1398
|
[3] |
Asai, T., Tena, G., Plotnikova, J. et al. Nature, 415 (2002),pp. 977-983
|
[4] |
Bari, R., Jones, J.D. Role of plant hormones in plant defence responses Plant Mol. Biol., 69 (2009),pp. 473-488
|
[5] |
Berrocal-Lobo, M., Molina, A. Trends Plant Sci., 13 (2008),pp. 145-150
|
[6] |
Bi, D., Johnson, K.C.M., Zhu, Z. et al. Mutations in an atypical TIR-NB-LRR-LIM resistance protein confer autoimmunity Frontiers Plant Sci., 2 (2011),p. 71
|
[7] |
Bohman, S., Staal, J., Thomma, B.P.H.J. et al. Plant J., 37 (2004),pp. 9-20
|
[8] |
Bushnell, W.R., Rowell, J.B. Suppressors of defense reactions: a model for roles in specificity Phytopathology, 71 (1981),pp. 1012-1014
|
[9] |
Cao, H., Bowling, S.A., Gordon, A.S. et al. Plant Cell, 6 (1994),pp. 1583-1592
|
[10] |
Chassot, C., Buchala, A., Schoonbeek, H.J. et al. Plant J., 55 (2008),pp. 555-567
|
[11] |
Chen, Y., Chao, Q., Tan, G. et al. Identification and fine-mapping of a major QTL conferring resistance against head smut in maize Theor. Appl. Genet., 117 (2008),pp. 1241-1252
|
[12] |
Ciuffetti, L.M., Tuori, R.P. Phytopathology, 89 (1999),pp. 444-449
|
[13] |
Collins, A., Milbourne, D., Ramsay, L. et al. QTL for field resistance to late blight in potato are strongly correlated with maturity and vigour Mol. Breeding, 5 (1999),pp. 387-398
|
[14] |
Colmenares, A.J., Aleu, J., Duran-Patron, R. et al. J. Chem. Ecol., 28 (2002),pp. 997-1005
|
[15] |
Dalmay, T., Hamilton, A., Rudd, S. et al. Cell, 101 (2000),pp. 543-553
|
[16] |
Dangl, J.L., McDowell, J.M. Two modes of pathogen recognition by plants Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 8575-8576
|
[17] |
Denby, K.J., Kumar, P., Kliebenstein, D.J. Plant J., 38 (2004),pp. 473-486
|
[18] |
Deslandes, L., Olivier, J., Peeters, N. et al. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 8024-8029
|
[19] |
Deslandes, L., Olivier, J., Theulieres, F. et al. Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 2404-2409
|
[20] |
Dinesh-Kumar, S.P. Mechanisms of plant resistance to viruses Phytopathology, 99 (2009),pp. S164-S165
|
[21] |
Dodds, P.N., Lawrence, G.J., Catanzariti, A.M. et al. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 8888-8893
|
[22] |
Dunning, F.M., Sun, W., Jansen, K.L. et al. Plant Cell, 19 (2007),pp. 3297-3313
|
[23] |
Ferrari, S., Galletti, R., Denoux, C. et al. Plant Physiol., 144 (2007),pp. 367-379
|
[24] |
Ferrari, S., Plotnikova, J.M., de Lorenzo, G. et al. Plant J., 35 (2003),pp. 193-205
|
[25] |
Feys, B.J., Moisan, L.J., Newman, M.A. et al. EMBO J., 20 (2001),pp. 5400-5411
|
[26] |
Fliegmann, J., Mithofer, A., Wanner, G. et al. An ancient enzyme domain hidden in the putative beta-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance J. Biol. Chem., 279 (2004),pp. 1132-1140
|
[27] |
Flor, H.H. Current Status of the Gene for Gene Concept Ann. Rev. Phytopathol., 9 (1971),pp. 275-296
|
[28] |
Fu, D., Uauy, C., Distelfeld, A. et al. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust Science, 323 (2009),pp. 1357-1360
|
[29] |
Fukuoka, S., Saka, N., Koga, H. et al. Loss of function of a proline-containing protein confers durable disease resistance in rice Science, 325 (2009),pp. 998-1001
|
[30] |
Gabriel, D.W., Rolfe, B.G. Working models of specific recognition in plant–microbe interactions Annu. Rev. Phytopathol., 28 (1990),pp. 365-391
|
[31] |
Gao, Z.H., Johansen, E., Eyers, S. et al. Plant J., 40 (2004),pp. 376-385
|
[32] |
Garcia-Brugger, A., Lamotte, O., Vandelle, E. et al. Early signaling events induced by elicitors of plant defenses Mol. Plant Microbe Interact., 19 (2006),pp. 711-724
|
[33] |
Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens Annu. Rev. Phytopathol., 43 (2005),pp. 205-227
|
[34] |
Glazebrook, J., Zook, M., Mert, F. et al. Genetics, 146 (1997),pp. 381-392
|
[35] |
Gomez-Gomez, L., Boller, T. Mol. Cell, 5 (2000),pp. 1003-1011
|
[36] |
Grant, M.R., Jones, J.D. Hormone (dis)harmony moulds plant health and disease Science, 324 (2009),pp. 750-752
|
[37] |
Gururani, M.A., Venkatesh, J., Upadhyaya, C.P. et al. Plant disease resistance genes: current status and future directions Physiol. Mol. Plant Pathol., 78 (2012),pp. 51-65
|
[38] |
Gust, A.A., Biswas, R., Lenz, H.D. et al. J. Biol. Chem., 282 (2007),pp. 32338-32348
|
[39] |
Halim, V.A., Altmann, S., Ellinger, D. et al. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid Plant J., 57 (2009),pp. 230-242
|
[40] |
He, S.Y., Nomura, K., Whittam, T.S. Type III protein secretion mechanism in mammalian and plant pathogens BBA Mol. Cell Res., 1694 (2004),pp. 181-206
|
[41] |
Heidrich, K., Wirthmueller, L., Tasset, C. et al. Science, 334 (2011),pp. 1401-1404
|
[42] |
Hofius, D., Schultz-Larsen, T., Joensen, J. et al. Cell, 137 (2009),pp. 773-783
|
[43] |
Horbach, R., Navarro-Quesada, A.R., Knogge, W. et al. When and how to kill a plant cell: infection strategies of plant pathogenic fungi J. Plant Physiol., 168 (2011),pp. 51-62
|
[44] |
Iyer-Pascuzzi, A.S., McCouch, S.R. Mol. Plant Microbe Interact., 20 (2007),pp. 731-739
|
[45] |
Jabs, T., Tschope, M., Colling, C. et al. Proc. Natl. Acad. Sci. USA, 94 (1997),pp. 4800-4805
|
[46] |
Jia, Y., McAdams, S.A., Bryan, G.T. et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance EMBO J., 19 (2000),pp. 4004-4014
|
[47] |
Johal, D.S., Briggs, S.P. Science, 258 (1992),pp. 985-987
|
[48] |
Jones, J.D.G. Putting knowledge of plant disease resistance genes to work Curr. Opin. Plant Biol., 4 (2001),pp. 281-287
|
[49] |
Jones, J.D.G., Dangl, J.L. The plant immune system Nature, 444 (2006),pp. 323-329
|
[50] |
Kaku, H., Nishizawa, Y., Ishii-Minami, N. et al. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 11086-11091
|
[51] |
Katagiri, F. A global view of defense gene expression regulation – a highly interconnected signaling network Curr. Opin. Plant Biol., 7 (2004),pp. 506-511
|
[52] |
Kawchuk, L.M., Hachey, J., Lynch, D.R. et al. Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 6511-6515
|
[53] |
Keen, N.T. Gene-for-gene complementarity in plant–pathogen interactions Annu. Rev. Genet., 24 (1990),pp. 447-463
|
[54] |
Kliebenstein, D.J., Rowe, H.C. Ecological costs of biotrophic versus necrotrophic pathogen resistance, the hypersensitive response and signal transduction Plant Sci., 174 (2008),pp. 551-556
|
[55] |
Kliebenstein, D.J., Rowe, H.C., Denby, K.J. Plant J., 44 (2005),pp. 25-36
|
[56] |
Koornneef, A., Pieterse, C.M.J. Cross talk in defense signaling Plant Physiol., 146 (2008),pp. 839-844
|
[57] |
Krattinger, S.G., Lagudah, E.S., Spielmeyer, W. et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat Science, 323 (2009),pp. 1360-1363
|
[58] |
Kunze, G., Zipfel, C., Robatzek, S. et al. Plant Cell, 16 (2004),pp. 3496-3507
|
[59] |
Liu, Y., Zhang, S. Plant Cell, 16 (2004),pp. 3386-3399
|
[60] |
Llorente, F., Alonso-Blanco, C., Sanchez-Rodriguez, C. et al. Plant J., 43 (2005),pp. 165-180
|
[61] |
Lotze, M.T., Zeh, H.J., Rubartelli, A. et al. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity Immunol. Rev., 220 (2007),pp. 60-81
|
[62] |
Lu, D., Wu, S., Gao, X. et al. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 496-501
|
[63] |
Macho, A.P., Guevara, C.M., Tornero, P. et al. The pseudomonas syringae effector protein HopZ1a suppresses effector-triggered immunity New Phytol., 187 (2010),pp. 1018-1033
|
[64] |
Marcel, T.C., Aghnoum, R., Durand, J. et al. Dissection of the barley 2L1.0 region carrying the ‘Laevigatum’ quantitative resistance gene to leaf rust using near-isogenic lines (NIL) and subNIL Mol. Plant Microbe Interact., 20 (2007),pp. 1604-1615
|
[65] |
Martin, G.B., Brommonschenkel, S.H., Chunwongse, J. et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato Science, 262 (1993),pp. 1432-1436
|
[66] |
Mcdowell, J.M., Simon, S.A. Recent insights into R gene evolution Mol. Plant Pathol., 7 (2006),pp. 437-448
|
[67] |
Meister, G., Tuschl, T. Mechanisms of gene silencing by double-stranded RNA Nature, 431 (2004),pp. 343-349
|
[68] |
Mengiste, T., Chen, X., Salmeron, J. et al. Plant Cell, 15 (2003),pp. 2551-2565
|
[69] |
Meyers, B.C., Kozik, A., Griego, A. et al. Plant Cell, 15 (2003),pp. 809-834
|
[70] |
Mutlu, N., Miklas, P., Reiser, J. et al. Plant Breeding, 124 (2005),pp. 282-287
|
[71] |
Navarro, L., Zipfel, C., Rowland, O. et al. Plant Physiol., 135 (2004),pp. 1113-1128
|
[72] |
Nawrath, C., Metraux, J.P. Plant Cell, 11 (1999),pp. 1393-1404
|
[73] |
Nicaise, V., Roux, M., Zipfel, C. Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm Plant Physiol., 150 (2009),pp. 1638-1647
|
[74] |
Nomura, K., Debroy, S., Lee, Y.H. et al. A bacterial virulence protein suppresses host innate immunity to cause plant disease Science, 313 (2006),pp. 220-223
|
[75] |
Nomura, K., Mecey, C., Lee, Y.N. et al. Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 10774-10779
|
[76] |
Nurnberger, T., Brunner, F., Kemmerling, B. et al. Innate immunity in plants and animals: striking similarities and obvious differences Immunol. Rev., 198 (2004),pp. 249-266
|
[77] |
Oh, C.S., Martin, G.B. Effector-triggered immunity mediated by the Pto kinase Trends Plant Sci., 16 (2011),pp. 132-140
|
[78] |
Pajerowska-Mukhtar, K., Dong, X.N. A kiss of death-proteasome-mediated membrane fusion and programmed cell death in plant defense against bacterial infection Genes Dev., 23 (2009),pp. 2449-2454
|
[79] |
Pandey, S.P., Somssich, I.E. The role of WRKY transcription factors in plant immunity Plant Physiol., 150 (2009),pp. 1648-1655
|
[80] |
Parlevliet, J.E. Durability of resistance against fungal, bacterial and viral pathogens; present situation Euphytica, 124 (2002),pp. 147-156
|
[81] |
Pieterse, C.M., Leon-Reyes, A., Van der Ent, S. et al. Networking by small-molecule hormones in plant immunity Nat. Chem. Biol., 5 (2009),pp. 308-316
|
[82] |
Poland, J.A., Balint-Kurti, P.J., Wisser, R.J. et al. Shades of gray: the world of quantitative disease resistance Trends Plant Sci., 14 (2009),pp. 21-29
|
[83] |
Pre, M., Atallah, M., Champion, A. et al. The AP2/ERFdomain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense Plant Physiol., 147 (2008),pp. 1347-1357
|
[84] |
Pumphrey, M.O., Bernardo, R., Anderson, J.A. Crop Sci., 47 (2007),pp. 200-206
|
[85] |
Qi, X., Niks, R.E., Stam, P. et al. Theor. Appl. Genet., 96 (1998),pp. 1205-1215
|
[86] |
Qi, Y., Tsuda, K., Glazebrook, J. et al. Mol. Plant Pathol., 12 (2011),pp. 702-708
|
[87] |
Qutob, D., Kemmerling, B., Brunner, F. et al. Phytotoxicity and innate immune responses induced by Nep1-like proteins Plant Cell, 18 (2006),pp. 3721-3744
|
[88] |
Qutob, D., Tedman-Jones, J., Gijzen, M. Effector-triggered immunity by the plant pathogen phytophthora Trends Microbiol., 14 (2006),pp. 470-473
|
[89] |
Robert-Seilaniantz, A., Grant, M., Jones, J.D. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism Annu. Rev. Phytopathol., 49 (2011),pp. 317-343
|
[90] |
Ron, M., Avni, A. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato Plant Cell, 16 (2004),pp. 1604-1615
|
[91] |
Ruffel, S., Dussault, M.H., Palloix, A. et al. A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4e (EIF4e) Plant J., 32 (2002),pp. 1067-1075
|
[92] |
Schlaeppi, K., Abou-Mansour, E., Buchala, A. et al. Plant J., 62 (2010),pp. 840-851
|
[93] |
Schwessinger, B., Zipfel, C. News from the frontline: recent insights into PAMP-triggered immunity in plants Curr. Opin. Plant Biol., 11 (2008),pp. 389-395
|
[94] |
Singh, R.P. Genetics and breeding for durable resistance to leaf and stripe rusts in wheat Turk. J. Agric. For. (2005),pp. 121-127
|
[95] |
Song, W.Y., Wang, G.L., Chen, L.L. et al. Science, 270 (1995),pp. 1804-1806
|
[96] |
Spoel, S.H., Dong, X. Making sense of hormone crosstalk during plant immune responses Cell Host Microbe, 3 (2008),pp. 348-351
|
[97] |
St Clair, D.A. Quantitative disease resistance and quantitative resistance loci in breeding Annu. Rev. Phytopathol., 48 (2010),pp. 247-268
|
[98] |
Tao, W., Liu, D., Liu, J. et al. Theor. Appl. Genet., 100 (2000),pp. 564-568
|
[99] |
Thomma, B.P.H.J., Eggermont, K., Penninckx, I.A.M.A. et al. Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 15107-15111
|
[100] |
Thomma, B.P.H.J., Eggermont, K., Tierens, K.F.M.J. et al. Plant Physiol., 121 (1999),pp. 1093-1101
|
[101] |
Thomma, B.P.H.J., Nelissen, I., Eggermont, K. et al. Plant J., 19 (1999),pp. 163-171
|
[102] |
Tilsner, J., Oparka, K.J. Tracking the green invaders: advances in imaging virus infection in plants Biochem. J., 430 (2010),pp. 21-37
|
[103] |
Torres, M.A., Jones, J.D., Dangl, J.L. Reactive oxygen species signaling in response to pathogens Plant Physiol., 141 (2006),pp. 373-378
|
[104] |
Tsuda, K., Katagiri, F. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity Curr. Opin. Plant Biol., 13 (2010),pp. 459-465
|
[105] |
Tsuda, K., Sato, M., Glazebrook, J. et al. Interplay between MAMP-triggered and SA-mediated defense responses Plant J., 53 (2008),pp. 763-775
|
[106] |
Vallejos, C.E., Jones, V., Stall, R.E. et al. Characterization of two recessive genes controlling resistance to all races of bacterial spot in peppers Theor. Appl. Genet., 121 (2010),pp. 37-46
|
[107] |
van Berloo, R., Aalbers, H., Werkman, A. et al. Resistance QTL confirmed through development of QTL-NILs for barley leaf rust resistance Mol. Breed., 8 (2001),pp. 187-195
|
[108] |
van der Hoorn, R.A.L., Kamoun, S. From guard to decoy: a new model for perception of plant pathogen effectors Plant Cell, 20 (2008),pp. 2009-2017
|
[109] |
van Kan, J.A.L. Licensed to kill: the lifestyle of a necrotrophic plant pathogen Trends Plant Sci., 11 (2006),pp. 247-253
|
[110] |
Vance, V., Vaucheret, H. RNA silencing in plants – defense and counter defense Science, 292 (2001),pp. 2277-2280
|
[111] |
Veronese, P., Chen, X., Bluhm, B. et al. Plant J., 40 (2004),pp. 558-574
|
[112] |
Veronese, P., Nakagami, H., Bluhm, B. et al. Plant Cell, 18 (2006),pp. 257-273
|
[113] |
Wang, L., Tsuda, K., Truman, W. et al. CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling Plant J., 67 (2011),pp. 1029-1041
|
[114] |
Wang, W., Barnaby, J.Y., Tada, Y. et al. Timing of plant immune responses by a central circadian regulator Nature, 470 (2011),pp. 110-U126
|
[115] |
Wang, W., Wen, Y., Berkey, R. et al. Plant Cell, 21 (2009),pp. 2898-2913
|
[116] |
Waterhouse, P.M., Graham, H.W., Wang, M.B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 13959-13964
|
[117] |
Xiang, T., Zong, N., Zou, Y. et al. Curr. Biol., 18 (2008),pp. 74-80
|
[118] |
Xie, D.X., Feys, B.F., James, S. et al. Science, 280 (1998),pp. 1091-1094
|
[119] |
Xie, Z.X., Johansen, L.K., Gustafson, A.M. et al. Genetic and functional diversification of small RNA pathways in plants PLoS Biol., 2 (2004),pp. 642-652
|
[120] |
Yang, B., Antony, G., Zhou, J.H. et al. Plant Cell, 22 (2010),pp. 3864-3876
|
[121] |
Young, N.D. The genetic architecture of resistance Curr. Opin. Plant Biol., 3 (2000),pp. 285-290
|
[122] |
Zenbayashi-Sawata, K., Fukuoka, S., Katagiri, S. et al. Phytopathology, 97 (2007),pp. 598-602
|
[123] |
Zhang, J., Li, W., Xiang, T. et al. Cell Host Microbe, 7 (2010),pp. 290-301
|
[124] |
Zhang, J., Lu, H., Li, X. et al. Mol. Plant Microbe Interact., 23 (2010),pp. 940-948
|
[125] |
Zhang, J., Shao, F., Li, Y. et al. Cell Host Microbe, 1 (2007),pp. 175-185
|
[126] |
Zhang, Y., Xu, S., Ding, P. et al. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 18220-18225
|
[127] |
Zhang, Y., Yang, Y., Fang, B. et al. Plant Cell, 22 (2010),pp. 3153-3163
|
[128] |
Zhang, Z., Wu, Y., Gao, M. et al. Cell Host Microbe, 11 (2012),pp. 253-263
|
[129] |
Zhao, X.R., Tan, G.Q., Xing, Y.X. et al. Mol. Breeding, 30 (2012),pp. 1077-1088
|
[130] |
Zhou, N., Tootle, T.L., Glazebrook, J. Plant Cell, 11 (1999),pp. 2419-2428
|
[131] |
Zhu, X.Y., Chen, S., Liu, X.Q. et al. Theor. Appl. Genet., 122 (2011),pp. 1331-1338
|
[132] |
Zipfel, C. Early molecular events in PAMP-triggered immunity Curr. Opin. Plant Biol., 12 (2009),pp. 414-420
|
[133] |
Zipfel, C., Kunze, G., Chinchilla, D. et al. Cell, 125 (2006),pp. 749-760
|
[134] |
Zipfel, C., Rathjen, J.P. Plant immunity: AvrPto targets the frontline Curr. Biol., 18 (2008),pp. R218-R220
|