5.9
CiteScore
5.9
Impact Factor
Volume 40 Issue 1
Jan.  2013
Turn off MathJax
Article Contents

The Genetic and Molecular Basis of Plant Resistance to Pathogens

doi: 10.1016/j.jgg.2012.11.003
More Information
  • Corresponding author: E-mail address: mxu@cau.edu.cn (Mingliang Xu)
  • Received Date: 2012-11-05
  • Accepted Date: 2012-12-03
  • Rev Recd Date: 2012-11-29
  • Available Online: 2012-12-10
  • Publish Date: 2013-01-20
  • Plant pathogens have evolved numerous strategies to obtain nutritive materials from their host, and plants in turn have evolved the preformed physical and chemical barriers as well as sophisticated two-tiered immune system to combat pathogen attacks. Genetically, plant resistance to pathogens can be divided into qualitative and quantitative disease resistance, conditioned by major gene(s) and multiple genes with minor effects, respectively. Qualitative disease resistance has been mostly detected in plant defense against biotrophic pathogens, whereas quantitative disease resistance is involved in defense response to all plant pathogens, from biotrophs, hemibiotrophs to necrotrophs. Plant resistance is achieved through interception of pathogen-derived effectors and elicitation of defense response. In recent years, great progress has been made related to the molecular basis underlying host–pathogen interactions. In this review, we would like to provide an update on genetic and molecular aspects of plant resistance to pathogens.
  • loading
  • [1]
    Aarts, N., Metz, M., Holub, E. et al. Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 10306-10311
    [2]
    Aerts, A.M., Thevissen, K., Bresseleers, S.M. et al. Plant Cell Rep., 26 (2007),pp. 1391-1398
    [3]
    Asai, T., Tena, G., Plotnikova, J. et al. Nature, 415 (2002),pp. 977-983
    [4]
    Bari, R., Jones, J.D. Role of plant hormones in plant defence responses Plant Mol. Biol., 69 (2009),pp. 473-488
    [5]
    Berrocal-Lobo, M., Molina, A. Trends Plant Sci., 13 (2008),pp. 145-150
    [6]
    Bi, D., Johnson, K.C.M., Zhu, Z. et al. Mutations in an atypical TIR-NB-LRR-LIM resistance protein confer autoimmunity Frontiers Plant Sci., 2 (2011),p. 71
    [7]
    Bohman, S., Staal, J., Thomma, B.P.H.J. et al. Plant J., 37 (2004),pp. 9-20
    [8]
    Bushnell, W.R., Rowell, J.B. Suppressors of defense reactions: a model for roles in specificity Phytopathology, 71 (1981),pp. 1012-1014
    [9]
    Cao, H., Bowling, S.A., Gordon, A.S. et al. Plant Cell, 6 (1994),pp. 1583-1592
    [10]
    Chassot, C., Buchala, A., Schoonbeek, H.J. et al. Plant J., 55 (2008),pp. 555-567
    [11]
    Chen, Y., Chao, Q., Tan, G. et al. Identification and fine-mapping of a major QTL conferring resistance against head smut in maize Theor. Appl. Genet., 117 (2008),pp. 1241-1252
    [12]
    Ciuffetti, L.M., Tuori, R.P. Phytopathology, 89 (1999),pp. 444-449
    [13]
    Collins, A., Milbourne, D., Ramsay, L. et al. QTL for field resistance to late blight in potato are strongly correlated with maturity and vigour Mol. Breeding, 5 (1999),pp. 387-398
    [14]
    Colmenares, A.J., Aleu, J., Duran-Patron, R. et al. J. Chem. Ecol., 28 (2002),pp. 997-1005
    [15]
    Dalmay, T., Hamilton, A., Rudd, S. et al. Cell, 101 (2000),pp. 543-553
    [16]
    Dangl, J.L., McDowell, J.M. Two modes of pathogen recognition by plants Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 8575-8576
    [17]
    Denby, K.J., Kumar, P., Kliebenstein, D.J. Plant J., 38 (2004),pp. 473-486
    [18]
    Deslandes, L., Olivier, J., Peeters, N. et al. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 8024-8029
    [19]
    Deslandes, L., Olivier, J., Theulieres, F. et al. Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 2404-2409
    [20]
    Dinesh-Kumar, S.P. Mechanisms of plant resistance to viruses Phytopathology, 99 (2009),pp. S164-S165
    [21]
    Dodds, P.N., Lawrence, G.J., Catanzariti, A.M. et al. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 8888-8893
    [22]
    Dunning, F.M., Sun, W., Jansen, K.L. et al. Plant Cell, 19 (2007),pp. 3297-3313
    [23]
    Ferrari, S., Galletti, R., Denoux, C. et al. Plant Physiol., 144 (2007),pp. 367-379
    [24]
    Ferrari, S., Plotnikova, J.M., de Lorenzo, G. et al. Plant J., 35 (2003),pp. 193-205
    [25]
    Feys, B.J., Moisan, L.J., Newman, M.A. et al. EMBO J., 20 (2001),pp. 5400-5411
    [26]
    Fliegmann, J., Mithofer, A., Wanner, G. et al. An ancient enzyme domain hidden in the putative beta-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance J. Biol. Chem., 279 (2004),pp. 1132-1140
    [27]
    Flor, H.H. Current Status of the Gene for Gene Concept Ann. Rev. Phytopathol., 9 (1971),pp. 275-296
    [28]
    Fu, D., Uauy, C., Distelfeld, A. et al. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust Science, 323 (2009),pp. 1357-1360
    [29]
    Fukuoka, S., Saka, N., Koga, H. et al. Loss of function of a proline-containing protein confers durable disease resistance in rice Science, 325 (2009),pp. 998-1001
    [30]
    Gabriel, D.W., Rolfe, B.G. Working models of specific recognition in plant–microbe interactions Annu. Rev. Phytopathol., 28 (1990),pp. 365-391
    [31]
    Gao, Z.H., Johansen, E., Eyers, S. et al. Plant J., 40 (2004),pp. 376-385
    [32]
    Garcia-Brugger, A., Lamotte, O., Vandelle, E. et al. Early signaling events induced by elicitors of plant defenses Mol. Plant Microbe Interact., 19 (2006),pp. 711-724
    [33]
    Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens Annu. Rev. Phytopathol., 43 (2005),pp. 205-227
    [34]
    Glazebrook, J., Zook, M., Mert, F. et al. Genetics, 146 (1997),pp. 381-392
    [35]
    Gomez-Gomez, L., Boller, T. Mol. Cell, 5 (2000),pp. 1003-1011
    [36]
    Grant, M.R., Jones, J.D. Hormone (dis)harmony moulds plant health and disease Science, 324 (2009),pp. 750-752
    [37]
    Gururani, M.A., Venkatesh, J., Upadhyaya, C.P. et al. Plant disease resistance genes: current status and future directions Physiol. Mol. Plant Pathol., 78 (2012),pp. 51-65
    [38]
    Gust, A.A., Biswas, R., Lenz, H.D. et al. J. Biol. Chem., 282 (2007),pp. 32338-32348
    [39]
    Halim, V.A., Altmann, S., Ellinger, D. et al. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid Plant J., 57 (2009),pp. 230-242
    [40]
    He, S.Y., Nomura, K., Whittam, T.S. Type III protein secretion mechanism in mammalian and plant pathogens BBA Mol. Cell Res., 1694 (2004),pp. 181-206
    [41]
    Heidrich, K., Wirthmueller, L., Tasset, C. et al. Science, 334 (2011),pp. 1401-1404
    [42]
    Hofius, D., Schultz-Larsen, T., Joensen, J. et al. Cell, 137 (2009),pp. 773-783
    [43]
    Horbach, R., Navarro-Quesada, A.R., Knogge, W. et al. When and how to kill a plant cell: infection strategies of plant pathogenic fungi J. Plant Physiol., 168 (2011),pp. 51-62
    [44]
    Iyer-Pascuzzi, A.S., McCouch, S.R. Mol. Plant Microbe Interact., 20 (2007),pp. 731-739
    [45]
    Jabs, T., Tschope, M., Colling, C. et al. Proc. Natl. Acad. Sci. USA, 94 (1997),pp. 4800-4805
    [46]
    Jia, Y., McAdams, S.A., Bryan, G.T. et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance EMBO J., 19 (2000),pp. 4004-4014
    [47]
    Johal, D.S., Briggs, S.P. Science, 258 (1992),pp. 985-987
    [48]
    Jones, J.D.G. Putting knowledge of plant disease resistance genes to work Curr. Opin. Plant Biol., 4 (2001),pp. 281-287
    [49]
    Jones, J.D.G., Dangl, J.L. The plant immune system Nature, 444 (2006),pp. 323-329
    [50]
    Kaku, H., Nishizawa, Y., Ishii-Minami, N. et al. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 11086-11091
    [51]
    Katagiri, F. A global view of defense gene expression regulation – a highly interconnected signaling network Curr. Opin. Plant Biol., 7 (2004),pp. 506-511
    [52]
    Kawchuk, L.M., Hachey, J., Lynch, D.R. et al. Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 6511-6515
    [53]
    Keen, N.T. Gene-for-gene complementarity in plant–pathogen interactions Annu. Rev. Genet., 24 (1990),pp. 447-463
    [54]
    Kliebenstein, D.J., Rowe, H.C. Ecological costs of biotrophic versus necrotrophic pathogen resistance, the hypersensitive response and signal transduction Plant Sci., 174 (2008),pp. 551-556
    [55]
    Kliebenstein, D.J., Rowe, H.C., Denby, K.J. Plant J., 44 (2005),pp. 25-36
    [56]
    Koornneef, A., Pieterse, C.M.J. Cross talk in defense signaling Plant Physiol., 146 (2008),pp. 839-844
    [57]
    Krattinger, S.G., Lagudah, E.S., Spielmeyer, W. et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat Science, 323 (2009),pp. 1360-1363
    [58]
    Kunze, G., Zipfel, C., Robatzek, S. et al. Plant Cell, 16 (2004),pp. 3496-3507
    [59]
    Liu, Y., Zhang, S. Plant Cell, 16 (2004),pp. 3386-3399
    [60]
    Llorente, F., Alonso-Blanco, C., Sanchez-Rodriguez, C. et al. Plant J., 43 (2005),pp. 165-180
    [61]
    Lotze, M.T., Zeh, H.J., Rubartelli, A. et al. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity Immunol. Rev., 220 (2007),pp. 60-81
    [62]
    Lu, D., Wu, S., Gao, X. et al. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 496-501
    [63]
    Macho, A.P., Guevara, C.M., Tornero, P. et al. The pseudomonas syringae effector protein HopZ1a suppresses effector-triggered immunity New Phytol., 187 (2010),pp. 1018-1033
    [64]
    Marcel, T.C., Aghnoum, R., Durand, J. et al. Dissection of the barley 2L1.0 region carrying the ‘Laevigatum’ quantitative resistance gene to leaf rust using near-isogenic lines (NIL) and subNIL Mol. Plant Microbe Interact., 20 (2007),pp. 1604-1615
    [65]
    Martin, G.B., Brommonschenkel, S.H., Chunwongse, J. et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato Science, 262 (1993),pp. 1432-1436
    [66]
    Mcdowell, J.M., Simon, S.A. Recent insights into R gene evolution Mol. Plant Pathol., 7 (2006),pp. 437-448
    [67]
    Meister, G., Tuschl, T. Mechanisms of gene silencing by double-stranded RNA Nature, 431 (2004),pp. 343-349
    [68]
    Mengiste, T., Chen, X., Salmeron, J. et al. Plant Cell, 15 (2003),pp. 2551-2565
    [69]
    Meyers, B.C., Kozik, A., Griego, A. et al. Plant Cell, 15 (2003),pp. 809-834
    [70]
    Mutlu, N., Miklas, P., Reiser, J. et al. Plant Breeding, 124 (2005),pp. 282-287
    [71]
    Navarro, L., Zipfel, C., Rowland, O. et al. Plant Physiol., 135 (2004),pp. 1113-1128
    [72]
    Nawrath, C., Metraux, J.P. Plant Cell, 11 (1999),pp. 1393-1404
    [73]
    Nicaise, V., Roux, M., Zipfel, C. Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm Plant Physiol., 150 (2009),pp. 1638-1647
    [74]
    Nomura, K., Debroy, S., Lee, Y.H. et al. A bacterial virulence protein suppresses host innate immunity to cause plant disease Science, 313 (2006),pp. 220-223
    [75]
    Nomura, K., Mecey, C., Lee, Y.N. et al. Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 10774-10779
    [76]
    Nurnberger, T., Brunner, F., Kemmerling, B. et al. Innate immunity in plants and animals: striking similarities and obvious differences Immunol. Rev., 198 (2004),pp. 249-266
    [77]
    Oh, C.S., Martin, G.B. Effector-triggered immunity mediated by the Pto kinase Trends Plant Sci., 16 (2011),pp. 132-140
    [78]
    Pajerowska-Mukhtar, K., Dong, X.N. A kiss of death-proteasome-mediated membrane fusion and programmed cell death in plant defense against bacterial infection Genes Dev., 23 (2009),pp. 2449-2454
    [79]
    Pandey, S.P., Somssich, I.E. The role of WRKY transcription factors in plant immunity Plant Physiol., 150 (2009),pp. 1648-1655
    [80]
    Parlevliet, J.E. Durability of resistance against fungal, bacterial and viral pathogens; present situation Euphytica, 124 (2002),pp. 147-156
    [81]
    Pieterse, C.M., Leon-Reyes, A., Van der Ent, S. et al. Networking by small-molecule hormones in plant immunity Nat. Chem. Biol., 5 (2009),pp. 308-316
    [82]
    Poland, J.A., Balint-Kurti, P.J., Wisser, R.J. et al. Shades of gray: the world of quantitative disease resistance Trends Plant Sci., 14 (2009),pp. 21-29
    [83]
    Pre, M., Atallah, M., Champion, A. et al. The AP2/ERFdomain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense Plant Physiol., 147 (2008),pp. 1347-1357
    [84]
    Pumphrey, M.O., Bernardo, R., Anderson, J.A. Crop Sci., 47 (2007),pp. 200-206
    [85]
    Qi, X., Niks, R.E., Stam, P. et al. Theor. Appl. Genet., 96 (1998),pp. 1205-1215
    [86]
    Qi, Y., Tsuda, K., Glazebrook, J. et al. Mol. Plant Pathol., 12 (2011),pp. 702-708
    [87]
    Qutob, D., Kemmerling, B., Brunner, F. et al. Phytotoxicity and innate immune responses induced by Nep1-like proteins Plant Cell, 18 (2006),pp. 3721-3744
    [88]
    Qutob, D., Tedman-Jones, J., Gijzen, M. Effector-triggered immunity by the plant pathogen phytophthora Trends Microbiol., 14 (2006),pp. 470-473
    [89]
    Robert-Seilaniantz, A., Grant, M., Jones, J.D. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism Annu. Rev. Phytopathol., 49 (2011),pp. 317-343
    [90]
    Ron, M., Avni, A. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato Plant Cell, 16 (2004),pp. 1604-1615
    [91]
    Ruffel, S., Dussault, M.H., Palloix, A. et al. A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4e (EIF4e) Plant J., 32 (2002),pp. 1067-1075
    [92]
    Schlaeppi, K., Abou-Mansour, E., Buchala, A. et al. Plant J., 62 (2010),pp. 840-851
    [93]
    Schwessinger, B., Zipfel, C. News from the frontline: recent insights into PAMP-triggered immunity in plants Curr. Opin. Plant Biol., 11 (2008),pp. 389-395
    [94]
    Singh, R.P. Genetics and breeding for durable resistance to leaf and stripe rusts in wheat Turk. J. Agric. For. (2005),pp. 121-127
    [95]
    Song, W.Y., Wang, G.L., Chen, L.L. et al. Science, 270 (1995),pp. 1804-1806
    [96]
    Spoel, S.H., Dong, X. Making sense of hormone crosstalk during plant immune responses Cell Host Microbe, 3 (2008),pp. 348-351
    [97]
    St Clair, D.A. Quantitative disease resistance and quantitative resistance loci in breeding Annu. Rev. Phytopathol., 48 (2010),pp. 247-268
    [98]
    Tao, W., Liu, D., Liu, J. et al. Theor. Appl. Genet., 100 (2000),pp. 564-568
    [99]
    Thomma, B.P.H.J., Eggermont, K., Penninckx, I.A.M.A. et al. Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 15107-15111
    [100]
    Thomma, B.P.H.J., Eggermont, K., Tierens, K.F.M.J. et al. Plant Physiol., 121 (1999),pp. 1093-1101
    [101]
    Thomma, B.P.H.J., Nelissen, I., Eggermont, K. et al. Plant J., 19 (1999),pp. 163-171
    [102]
    Tilsner, J., Oparka, K.J. Tracking the green invaders: advances in imaging virus infection in plants Biochem. J., 430 (2010),pp. 21-37
    [103]
    Torres, M.A., Jones, J.D., Dangl, J.L. Reactive oxygen species signaling in response to pathogens Plant Physiol., 141 (2006),pp. 373-378
    [104]
    Tsuda, K., Katagiri, F. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity Curr. Opin. Plant Biol., 13 (2010),pp. 459-465
    [105]
    Tsuda, K., Sato, M., Glazebrook, J. et al. Interplay between MAMP-triggered and SA-mediated defense responses Plant J., 53 (2008),pp. 763-775
    [106]
    Vallejos, C.E., Jones, V., Stall, R.E. et al. Characterization of two recessive genes controlling resistance to all races of bacterial spot in peppers Theor. Appl. Genet., 121 (2010),pp. 37-46
    [107]
    van Berloo, R., Aalbers, H., Werkman, A. et al. Resistance QTL confirmed through development of QTL-NILs for barley leaf rust resistance Mol. Breed., 8 (2001),pp. 187-195
    [108]
    van der Hoorn, R.A.L., Kamoun, S. From guard to decoy: a new model for perception of plant pathogen effectors Plant Cell, 20 (2008),pp. 2009-2017
    [109]
    van Kan, J.A.L. Licensed to kill: the lifestyle of a necrotrophic plant pathogen Trends Plant Sci., 11 (2006),pp. 247-253
    [110]
    Vance, V., Vaucheret, H. RNA silencing in plants – defense and counter defense Science, 292 (2001),pp. 2277-2280
    [111]
    Veronese, P., Chen, X., Bluhm, B. et al. Plant J., 40 (2004),pp. 558-574
    [112]
    Veronese, P., Nakagami, H., Bluhm, B. et al. Plant Cell, 18 (2006),pp. 257-273
    [113]
    Wang, L., Tsuda, K., Truman, W. et al. CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling Plant J., 67 (2011),pp. 1029-1041
    [114]
    Wang, W., Barnaby, J.Y., Tada, Y. et al. Timing of plant immune responses by a central circadian regulator Nature, 470 (2011),pp. 110-U126
    [115]
    Wang, W., Wen, Y., Berkey, R. et al. Plant Cell, 21 (2009),pp. 2898-2913
    [116]
    Waterhouse, P.M., Graham, H.W., Wang, M.B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 13959-13964
    [117]
    Xiang, T., Zong, N., Zou, Y. et al. Curr. Biol., 18 (2008),pp. 74-80
    [118]
    Xie, D.X., Feys, B.F., James, S. et al. Science, 280 (1998),pp. 1091-1094
    [119]
    Xie, Z.X., Johansen, L.K., Gustafson, A.M. et al. Genetic and functional diversification of small RNA pathways in plants PLoS Biol., 2 (2004),pp. 642-652
    [120]
    Yang, B., Antony, G., Zhou, J.H. et al. Plant Cell, 22 (2010),pp. 3864-3876
    [121]
    Young, N.D. The genetic architecture of resistance Curr. Opin. Plant Biol., 3 (2000),pp. 285-290
    [122]
    Zenbayashi-Sawata, K., Fukuoka, S., Katagiri, S. et al. Phytopathology, 97 (2007),pp. 598-602
    [123]
    Zhang, J., Li, W., Xiang, T. et al. Cell Host Microbe, 7 (2010),pp. 290-301
    [124]
    Zhang, J., Lu, H., Li, X. et al. Mol. Plant Microbe Interact., 23 (2010),pp. 940-948
    [125]
    Zhang, J., Shao, F., Li, Y. et al. Cell Host Microbe, 1 (2007),pp. 175-185
    [126]
    Zhang, Y., Xu, S., Ding, P. et al. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 18220-18225
    [127]
    Zhang, Y., Yang, Y., Fang, B. et al. Plant Cell, 22 (2010),pp. 3153-3163
    [128]
    Zhang, Z., Wu, Y., Gao, M. et al. Cell Host Microbe, 11 (2012),pp. 253-263
    [129]
    Zhao, X.R., Tan, G.Q., Xing, Y.X. et al. Mol. Breeding, 30 (2012),pp. 1077-1088
    [130]
    Zhou, N., Tootle, T.L., Glazebrook, J. Plant Cell, 11 (1999),pp. 2419-2428
    [131]
    Zhu, X.Y., Chen, S., Liu, X.Q. et al. Theor. Appl. Genet., 122 (2011),pp. 1331-1338
    [132]
    Zipfel, C. Early molecular events in PAMP-triggered immunity Curr. Opin. Plant Biol., 12 (2009),pp. 414-420
    [133]
    Zipfel, C., Kunze, G., Chinchilla, D. et al. Cell, 125 (2006),pp. 749-760
    [134]
    Zipfel, C., Rathjen, J.P. Plant immunity: AvrPto targets the frontline Curr. Biol., 18 (2008),pp. R218-R220
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (102) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return