[1] |
Aasen, T., Raya, A., Barrero, M.J. et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes Nat. Biotechnol., 26 (2008),pp. 1276-1284
|
[2] |
Agarwal, S., Holton, K.L., Lanza, R. Efficient differentiation of functional hepatocytes from human embryonic stem cells Stem Cells, 26 (2008),pp. 1117-1127
|
[3] |
Ang, Y.S., Tsai, S.Y., Lee, D.F. et al. Cell, 145 (2011),pp. 183-197
|
[4] |
Anokye-Danso, F., Trivedi, C.M., Juhr, D. et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency Cell Stem Cell, 8 (2011),pp. 376-388
|
[5] |
Besser, D. Expression of nodal, lefty-a, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3 J. Biol. Chem., 279 (2004),pp. 45076-45084
|
[6] |
Brunet, A., Brondello, J.M., L'Allemain, G. et al. MAP kinase module: role in the control of cell proliferation C. R. Seances Soc. Biol. Fil., 189 (1995),pp. 43-57
|
[7] |
Giorgetti, A., Montserrat, N., Aasen, T. et al. Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2 Cell Stem Cell, 5 (2009),pp. 353-357
|
[8] |
Kehat, I., Kenyagin-Karsenti, D., Snir, M. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes J. Clin. Invest., 108 (2001),pp. 407-414
|
[9] |
Li, X.J., Du, Z.W., Zarnowska, E.D. et al. Specification of motoneurons from human embryonic stem cells Nat. Biotechnol., 23 (2005),pp. 215-221
|
[10] |
Nishimoto, M., Fukushima, A., Okuda, A. et al. The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2 Mol. Cell. Biol., 19 (1999),pp. 5453-5465
|
[11] |
Ocana, O.H., Nieto, M.A. Epithelial plasticity, stemness and pluripotency Cell Res., 20 (2010),pp. 1086-1088
|
[12] |
Pan, C., Hicks, A., Guan, X. et al. SNL fibroblast feeder layers support derivation and maintenance of human induced pluripotent stem cells J. Genet. Genomics, 37 (2010),pp. 241-248
|
[13] |
Park, I.H., Zhao, R., West, J.A. et al. Reprogramming of human somatic cells to pluripotency with defined factors Nature, 451 (2008),pp. 141-146
|
[14] |
Plath, K., Lowry, W.E. Progress in understanding reprogramming to the induced pluripotent state Nat. Rev. Genet., 12 (2011),pp. 253-265
|
[15] |
Shi, W., Wang, H., Pan, G. et al. J. Biol. Chem., 281 (2006),pp. 23319-23325
|
[16] |
Takahashi, K., Tanabe, K., Ohnuki, M. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors Cell, 131 (2007),pp. 861-872
|
[17] |
Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S. et al. Embryonic stem cell lines derived from human blastocysts Science, 282 (1998),pp. 1145-1147
|
[18] |
Wang, K., Wang, H., Wang, J. et al. System approaches reveal the molecular networks involved in neural stem cell differentiation Protein Cell, 3 (2012),pp. 213-224
|
[19] |
Wang, L., Li, L., Shojaei, F. et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties Immunity, 21 (2004),pp. 31-41
|
[20] |
Wang, L., Xue, Y., Shen, Y. et al. Claudin 6: a novel surface marker for characterizing mouse pluripotent stem cells Cell Res., 22 (2012),pp. 1082-1085
|
[21] |
Wang, Q., Mou, X., Cao, H. et al. A novel xeno-free and feeder-cell-free system for human pluripotent stem cell culture Protein Cell, 3 (2012),pp. 51-59
|
[22] |
Yi, F., Liu, G.H., Izpisua Belmonte, J.C. Human induced pluripotent stem cells derived hepatocytes: rising promise for disease modeling, drug development and cell therapy Protein Cell, 3 (2012),pp. 246-250
|
[23] |
Yu, J., Vodyanik, M.A., Smuga-Otto, K. et al. Induced pluripotent stem cell lines derived from human somatic cells Science, 318 (2007),pp. 1917-1920
|
[24] |
Zeng, F., Schultz, R.M. RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo Dev. Biol., 283 (2005),pp. 40-57
|
[25] |
Zeng, F., Baldwin, D.A., Schultz, R.M. Transcript profiling during preimplantation mouse development Dev. Biol., 272 (2004),pp. 483-496
|
[26] |
Zhang, S.C., Wernig, M., Duncan, I.D. et al. Nat. Biotechnol., 19 (2001),pp. 1129-1133
|
[27] |
Zhao, X.Y., Li, W., Lv, Z. et al. iPS cells produce viable mice through tetraploid complementation Nature, 461 (2009),pp. 86-90
|