5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 9
Sep.  2012
Turn off MathJax
Article Contents

Establishment of Multi-Site Infection Model in Zebrafish Larvae for Studying Staphylococcus aureus Infectious Disease

doi: 10.1016/j.jgg.2012.07.006
More Information
  • Corresponding author: E-mail address: bhu@ustc.edu.cn (Bing Hu)
  • Received Date: 2012-04-30
  • Accepted Date: 2012-07-16
  • Rev Recd Date: 2012-06-26
  • Available Online: 2012-08-23
  • Publish Date: 2012-09-20
  • Zebrafish (Danio rerio) is an ideal model for studying the mechanism of infectious disease and the interaction between host and pathogen. As a teleost, zebrafish has developed a complete immune system which is similar to mammals. Moreover, the easy acquirement of large amounts of transparent embryos makes it a good candidate for gene manipulation and drug screening. In a zebrafish infection model, all of the site, timing, and dose of the bacteria microinjection into the embryo are important factors that determine the bacterial infection of host. Here, we established a multi-site infection model in zebrafish larvae of 36 hours post-fertilization (hpf) by microinjecting wild-type or GFP-expressing Staphylococcus aereus (S. aureus) with gradient burdens into different embryo sites including the pericardial cavity (PC), eye, the fourth hindbrain ventricle (4V), yolk circulation valley (YCV), caudal vein (CV), yolk body (YB), and Duct of Cuvier (DC) to resemble human infectious disease. With the combination of GFP-expressing S. aureus and transgenic zebrafish Tg (coro1a: eGFP; lyz: Dsred) and Tg (lyz: Dsred) lines whose macrophages or neutrophils are fluorescent labeled, we observed the dynamic process of bacterial infection by in vivo multicolored confocal fluorescence imaging. Analyses of zebrafish embryo survival, bacterial proliferation and myeloid cells phagocytosis show that the site- and dose-dependent differences exist in infection of different bacterial entry routes. This work provides a consideration for the future study of pathogenesis and host resistance through selection of multi-site infection model. More interaction mechanisms between pathogenic bacteria virulence factors and the immune responses of zebrafish could be determined through zebrafish multi-site infection model.
  • loading
  • [1]
    Adams, K.N., Takaki, K., Connolly, L.E. et al. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism Cell, 145 (2011),pp. 39-53
    [2]
    Archer, G.L. Clin. Infect. Dis., 26 (1998),pp. 1179-1181
    [3]
    Benard, E.L., van der Sar, A.M., Ellett, F. et al. Infection of zebrafish embryos with intracellular bacterial pathogens J. Vis. Exp. (2012),pp. 3781-3791
    [4]
    Brannon, M.K., Davis, J.M., Mathias, J.R. et al. Cell. Microbiol., 11 (2009),pp. 755-768
    [5]
    Clatworthy, A.E., Lee, J.S.W., Leibman, M. et al. Infect. Immun., 77 (2009),pp. 1293-1303
    [6]
    Colucci-Guyon, E., Tinevez, J.Y., Renshaw, S.A. et al. J. Cell Sci., 124 (2011),pp. 3053-3059
    [7]
    Cosma, C.L., Humbert, O., Ramakrishnan, L. Superinfecting mycobacteria home to established tuberculous granulomas Nat. Immunol., 5 (2004),pp. 828-835
    [8]
    Cosma, C.L., Swaim, L.E., Volkman, H. et al. Curr. Protoc. Microbiol (2006)
    [9]
    Davis, J.M., Clay, H., Lewis, J.L. et al. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos Immunity, 17 (2002),pp. 693-702
    [10]
    Ding, L., Yan, X., Sun, X. et al. Regulation of zebrafish development by microRNAs Hereditas, 33 (2011),pp. 1179-1184
    [11]
    Drabkin, D.L. Metabolism of the hemin chromoproteins Physiol. Rev., 31 (1951),pp. 345-431
    [12]
    Entenza, J.M., Vouillamoz, J., Glauser, M.P. et al. Efficacy of trovafloxacin in treatment of experimental staphylococcal or streptococcal endocarditis Antimicrob. Agents and Chemother., 43 (1999),pp. 77-84
    [13]
    Gray, C., Loynes, C.A., Whyte, M.K. et al. Simultaneous intravital imaging of macrophage and neutrophil behaviour during inflammation using a novel transgenic zebrafish Thromb. Haemost., 105 (2011),pp. 811-819
    [14]
    Herbomel, P., Thisse, B., Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo Development, 126 (1999),pp. 3735-3745
    [15]
    Hubscher, J., McCallum, N., Sifri, C.D. et al. FEMS Microbiol. Lett., 295 (2009),pp. 251-260
    [16]
    Isogai, S., Horiguchi, M., Weinstein, B.M. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development Dev. Biol., 230 (2001),pp. 278-301
    [17]
    Lam, S.H., Chua, H.L., Gong, Z. et al. Dev. Comp. Immunol., 28 (2004),pp. 9-28
    [18]
    Le Guyader, D., Redd, M.J., Colucci-Guyon, E. et al. Origins and unconventional behavior of neutrophils in developing zebrafish Blood, 111 (2008),pp. 132-141
    [19]
    Lesley, R., Ramakrishnan, L. Insights into early mycobacterial pathogenesis from the zebrafish Curr. Opin. Microbiol., 11 (2008),pp. 277-283
    [20]
    Levraud, J.P., Colucci-Guyon, E., Redd, M.J. et al. Methods Mol. Biol., 415 (2008),pp. 337-363
    [21]
    Levraud, J.P., Disson, O., Kissa, K. et al. Infect. Immun., 77 (2009),pp. 3651-3660
    [22]
    Li, L., Yan, B., Shi, Y.Q. et al. Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration J. Biol. Chem., 287 (2012),pp. 25353-25360
    [23]
    Lin, B., Chen, S.W., Cao, Z. et al. Mol. Immunol., 44 (2007),pp. 295-301
    [24]
    Ling, S.H., Wang, X.H., Xie, L. et al. Microbiology, 146 (2000),pp. 7-19
    [25]
    Liu, Z.Q., Deng, G.M., Foster, S. et al. Staphylococcal peptidoglycans induce arthritis Arthritis Res., 3 (2001),pp. 375-380
    [26]
    Mathias, J.R., Perrin, B.J., Liu, T.X. et al. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish J. Leukoc. Biol., 80 (2006),pp. 1281-1288
    [27]
    Mazmanian, S.K., Skaar, E.P., Gaspar, A.H. et al. Science, 299 (2003),pp. 906-909
    [28]
    Meijer, A.H., Spaink, H.P. Host-pathogen interactions made transparent with the zebrafish model Curr. Drug Targets, 12 (2011),pp. 1000-1017
    [29]
    Meijer, A.H., Van der Sar, A.M., Cunha, C. et al. Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish Dev. Comp. Immunol., 32 (2008),pp. 36-49
    [30]
    Meijer, A.H., Verbeek, F.J., Salas-Vidal, E. et al. Mol. Immunol., 42 (2005),pp. 1185-1203
    [31]
    Miller, J.D., Neely, M.N. Zebrafish as a model host for streptococcal pathogenesis Acta Trop., 91 (2004),pp. 53-68
    [32]
    Neely, M.N., Pfeifer, J.D., Caparon, M. Streptococcus-zebrafish model of bacterial pathogenesis Infect. Immun., 70 (2002),pp. 3904-3914
    [33]
    Novoa, B., Figueras, A. Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases Adv. Exp. Med. Biol., 946 (2012),pp. 253-275
    [34]
    Novoa, B., Romero, A., Mulero, V. et al. Vaccine, 24 (2006),pp. 5806-5816
    [35]
    O'Toole, R., Von Hofsten, J., Rosqvist, R. et al. Microb. Pathog., 37 (2004),pp. 41-46
    [36]
    Oliver, C.E., Beier, R.C., Hume, M.E. et al. Effect of chlorate, molybdate, and shikimic acid on Salmonella enterica serovar Typhimurium in aerobic and anaerobic cultures Anaerobe, 16 (2010),pp. 106-113
    [37]
    Phelps, H.A., Runft, D.L., Neely, M.N. Adult zebrafish model of streptococcal infection Curr. Protoc. Microbiol. (2009)
    [38]
    Pishchany, G., Dickey, S.E., Skaar, E.P. Infect. Immun., 77 (2009),pp. 2624-2634
    [39]
    Pishchany, G., McCoy, A.L., Torres, V.J. et al. Cell Host Microbe, 8 (2010),pp. 544-550
    [40]
    Prajsnar, T.K., Cunliffe, V.T., Foster, S.J. et al. Cell. Microbiol., 10 (2008),pp. 2312-2325
    [41]
    Pressley, M.E., Phelan, P.E., Witten, P.E. et al. Dev. Comp. Immunol., 29 (2005),pp. 501-513
    [42]
    Qi, F., Lin, S. Development of retrovirus-mediaten insertional mutagenesis in zebrafish and its application in saturation mutagenesis and gene screening Hereditas, 31 (2004),pp. 750-757
    [43]
    Renshaw, S.A., Loynes, C.A., Trushell, D.M. et al. A transgenic zebrafish model of neutrophilic inflammation Blood, 108 (2006),pp. 3976-3988
    [44]
    Renshaw, S.A., Trede, N.S. A model 450 million years in the making: zebrafish and vertebrate immunity Dis. Model. Mech., 5 (2012),pp. 38-47
    [45]
    Rhodes, J., Hagen, A., Hsu, K. et al. Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish Dev. Cell, 8 (2005),pp. 97-108
    [46]
    Tao, T., Peng, J. Liver development in zebrafish J. Genet. Genomics, 36 (2009),pp. 325-334
    [47]
    Torres, V.J., Attia, A.S., Mason, W.J. et al. Infect. Immun., 78 (2010),pp. 1618-1628
    [48]
    Torres, V.J., Pishchany, G., Humayun, M. et al. J. Bacteriol., 188 (2006),pp. 8421-8429
    [49]
    Traver, D., Herbomel, P., Patton, E.E. et al. The zebrafish as a model organism to study development of the immune system Adv. Immunol., 81 (2003),pp. 253-330
    [50]
    Trede, N.S., Langenau, D.M., Traver, D. et al. The use of zebrafish to understand immunity Immunity, 20 (2004),pp. 367-379
    [51]
    van der Sar, A.M., Musters, R.J.P., van Eeden, F.J.M. et al. Cell. Microbiol., 5 (2003),pp. 601-611
    [52]
    Vojtech, L.N., Sanders, G.E., Conway, C. et al. Host immune response and acute disease in a zebrafish model of Francisella pathogenesis Infect. Immun., 77 (2009),pp. 914-925
    [53]
    Volkman, H.E., Pozos, T.C., Zheng, J. et al. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium Science, 327 (2010),pp. 466-469
    [54]
    Weerdenburg, E.M., Abdallah, A.M., Mitra, S. et al. ESX-5-deficient Mycobacterium marinum is hypervirulent in adult zebrafish Cell Microbiol., 14 (2012),pp. 728-739
    [55]
    Wu, Y.P., Xiong, Q., Zhang, G.X. et al. The research progress of zebrafish gene engineering Acta Genet. Sin., 31 (2004),pp. 1167-1174
    [56]
    Xiong, M.H., Bao, Y., Yang, X.Z. et al. Lipase-sensitive polymeric triple-layered nanogel for “on-demand” drug delivery J. Am. Chem. Soc., 134 (2012),pp. 4355-4362
    [57]
    Xu, X.P., Zhang, L.C., Weng, S.P. et al. Virology, 376 (2008),pp. 1-12
    [58]
    Zhang, Y., Chen, F., Deng, M. Research progress of zebrafish as a model system for hematological neoplasms Hereditas, 31 (2009),pp. 889-895
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (90) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return