[1] |
Amack, J.D., Yost, H.J. Curr. Biol., 14 (2004),pp. 685-690
|
[2] |
Amsterdam, A. Insertional mutagenesis in zebrafish Dev. Dyn., 228 (2003),pp. 523-534
|
[3] |
Amsterdam, A., Burgess, S., Golling, G. et al. A large-scale insertional mutagenesis screen in zebrafish Genes Dev., 13 (1999),pp. 2713-2724
|
[4] |
Amsterdam, A., Nissen, R.M., Sun, Z. et al. Identification of 315 genes essential for early zebrafish development Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 12792-12797
|
[5] |
Ben, J., Elworthy, S., Ng, A.S. et al. Development, 138 (2011),pp. 4969-4978
|
[6] |
Bibikova, M., Beumer, K., Trautman, J.K. et al. Enhancing gene targeting with designed zinc finger nucleases Science, 300 (2003),p. 764
|
[7] |
Briggs, A.W., Rios, X., Chari, R. et al. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers Nucleic Acids Res., 40 (2012),p. e117
|
[8] |
Boch, J., Scholze, H., Schornack, S. et al. Breaking the code of DNA binding specificity of TAL-type III effectors Science, 326 (2009),pp. 1509-1512
|
[9] |
Cade, L., Reyon, D., Hwang, W.Y. et al. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs Nucleic Acids Res. (2012)
|
[10] |
Cermak, T., Doyle, E.L., Christian, M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting Nucleic Acids Res., 39 (2011),p. e82
|
[11] |
Chakrabarti, S., Streisinger, G., Singer, F. et al. Genetics, 103 (1983),pp. 109-123
|
[12] |
Chen, F., Pruett-Miller, S.M., Huang, Y. et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases Nat. Methods, 8 (2011),pp. 753-755
|
[13] |
Christian, M., Cermak, T., Doyle, E.L. et al. Targeting DNA double-strand breaks with TAL effector nucleases Genetics, 186 (2010),pp. 757-761
|
[14] |
Clark, K.J., Balciunas, D., Pogoda, H.M. et al. Nat. Methods, 8 (2011),pp. 506-512
|
[15] |
Cong, L., Zhou, R., Kuo, Y.C. et al. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains Nat. Commun., 3 (2012),p. 968
|
[16] |
Cui, X., Ji, D., Fisher, D.A. et al. Targeted integration in rat and mouse embryos with zinc-finger nucleases Nat. Biotechnol., 29 (2011),pp. 64-67
|
[17] |
Cui, Z., Yang, Y., Kaufman, C.D. et al. RecA-mediated, targeted mutagenesis in zebrafish Mar. Biotechnol. (NY), 5 (2003),pp. 174-184
|
[18] |
Davidson, A.E., Balciunas, D., Mohn, D. et al. Dev. Biol., 263 (2003),pp. 191-202
|
[19] |
de Bruijn, E., Cuppen, E., Feitsma, H. Highly efficient ENU mutagenesis in zebrafish Methods Mol. Biol., 546 (2009),pp. 3-12
|
[20] |
Dong, M., Fu, Y.F., Du, T.T. et al. Heritable and lineage-specific gene knockdown in zebrafish embryo PLoS ONE, 4 (2009),p. e6125
|
[21] |
Dong, Z., Ge, J., Li, K. et al. PLoS ONE, 6 (2011),p. e28897
|
[22] |
Doyon, Y., McCammon, J.M., Miller, J.C. et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases Nat. Biotechnol., 26 (2008),pp. 702-708
|
[23] |
Driever, W., Solnica-Krezel, L., Schier, A.F. et al. A genetic screen for mutations affecting embryogenesis in zebrafish Development, 123 (1996),pp. 37-46
|
[24] |
Eisen, J.S., Smith, J.C. Controlling morpholino experiments: don't stop making antisense Development, 135 (2008),pp. 1735-1743
|
[25] |
Emelyanov, A., Gao, Y., Naqvi, N.I. et al. Trans-kingdom transposition of the maize dissociation element Genetics, 174 (2006),pp. 1095-1104
|
[26] |
Foley, J.E., Yeh, J.-R.J., Maeder, M.L. et al. Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN) PLoS ONE, 4 (2009),p. e4348
|
[27] |
Geibetaler, R., Scholze, H., Hahn, S. et al. Transcriptional activators of human genes with programmable DNA-specificity PLoS ONE, 6 (2011),p. e19509
|
[28] |
Geurts, A.M., Cost, G.J., Freyvert, Y. et al. Science, 325 (2009),p. 433
|
[29] |
Golling, G., Amsterdam, A., Sun, Z. et al. Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development Nat. Genet., 31 (2002),pp. 135-140
|
[30] |
Gupta, A., Christensen, R.G., Rayla, A.L. et al. An optimized two-finger archive for ZFN-mediated gene targeting Nat. Methods, 9 (2012),pp. 588-590
|
[31] |
Gupta, A., Meng, X., Zhu, L.J. et al. Nucleic Acids Res., 39 (2011),pp. 381-392
|
[32] |
Haffter, P., Granato, M., Brand, M. et al. Development, 123 (1996),pp. 1-36
|
[33] |
Hagmann, M., Bruggmann, R., Xue, L. et al. Biol. Chem., 379 (1998),pp. 673-681
|
[34] |
Hockemeyer, D., Wang, H., Kiani, S. et al. Genetic engineering of human pluripotent cells using TALE nucleases Nat. Biotechnol., 29 (2011),pp. 731-734
|
[35] |
Huang, P., Xiao, A., Zhou, M. et al. Heritable gene targeting in zebrafish using customized TALENs Nat. Biotechnol., 29 (2011),pp. 699-700
|
[36] |
Hyde, D.R., Godwin, A.R., Thummel, R. J. Vis. Exp. (2012),p. e3632
|
[37] |
Kawakami, K., Shima, A., Kawakami, N. Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 11403-11408
|
[38] |
Kawakami, K., Takeda, H., Kawakami, N. et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish Dev. Cell, 7 (2004),pp. 133-144
|
[39] |
Kim, E., Kim, S., Kim, D.H. et al. Precision genome engineering with programmable DNA-nicking enzymes Genome Res., 22 (2012),pp. 1327-1333
|
[40] |
Koga, A., Cheah, F.S., Hamaguchi, S. et al. Dev. Dyn., 237 (2008),pp. 2466-2474
|
[41] |
Kondrychyn, I., Garcia-Lecea, M., Emelyanov, A. et al. BMC Genomics, 10 (2009),p. 418
|
[42] |
Lawson, N.D., Wolfe, S.A. Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish Dev. Cell, 21 (2011),pp. 48-64
|
[43] |
Lee, H.J., Kim, E., Kim, J.S. Targeted chromosomal deletions in human cells using zinc finger nucleases Genome Res., 20 (2010),pp. 81-89
|
[44] |
Li, L., Piatek, M.J., Atef, A. et al. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification Plant Mol. Biol., 78 (2012),pp. 407-416
|
[45] |
Li, T., Huang, S., Jiang, W.Z. et al. Nucleic Acids Res., 39 (2011),pp. 359-372
|
[46] |
Li, T., Huang, S., Zhao, X. et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes Nucleic Acids Res., 39 (2011),pp. 6315-6325
|
[47] |
Li, T., Liu, B., Spalding, M.H. et al. High-efficiency TALEN-based gene editing produces disease-resistant rice Nat. Biotechnol., 30 (2012),pp. 390-392
|
[48] |
Lieschke, G.J., Currie, P.D. Animal models of human disease: zebrafish swim into view Nat. Rev. Genet., 8 (2007),pp. 353-367
|
[49] |
Lin, S., Gaiano, N., Culp, P. et al. Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish Science, 265 (1994),pp. 666-669
|
[50] |
Liu, J., Li, C., Yu, Z. et al. J. Genet. Genomics, 39 (2012),pp. 209-215
|
[51] |
Lombardo, A., Genovese, P., Beausejour, C.M. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery Nat. Biotechnol., 25 (2007),pp. 1298-1306
|
[52] |
Maddison, L.A., Lu, J., Chen, W. Generating conditional mutations in zebrafish using gene-trap mutagenesis Methods Cell Biol., 104 (2011),pp. 1-22
|
[53] |
Maeder, M.L., Thibodeau-Beganny, S., Osiak, A. et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification Mol. Cell, 31 (2008),pp. 294-301
|
[54] |
Mahfouz, M.M., Li, L., Shamimuzzaman, M. et al. Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 2623-2628
|
[55] |
Meng, X., Noyes, M.B., Zhu, L.J. et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases Nat. Biotechnol., 26 (2008),pp. 695-701
|
[56] |
Miller, J.C., Tan, S., Qiao, G. et al. A TALE nuclease architecture for efficient genome editing Nat. Biotechnol., 29 (2011),pp. 143-148
|
[57] |
Moens, C.B., Donn, T.M., Wolf-Saxon, E.R. et al. Reverse genetics in zebrafish by TILLING Brief Funct. Genomic. Proteomic., 7 (2008),pp. 454-459
|
[58] |
Moore, F.E., Reyon, D., Sander, J.D. et al. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs) PLoS ONE, 7 (2012),p. e37877
|
[59] |
Morbitzer, R., Elsaesser, J., Hausner, J. et al. Assembly of custom TALE-type DNA binding domains by modular cloning Nucleic Acids Res., 39 (2011),pp. 5790-5799
|
[60] |
Morbitzer, R., Romer, P., Boch, J. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 21617-21622
|
[61] |
Moscou, M.J., Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors Science, 326 (2009),p. 1501
|
[62] |
Mullins, M.C., Hammerschmidt, M., Haffter, P. et al. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate Curr. Biol., 4 (1994),pp. 189-202
|
[63] |
Nasevicius, A., Ekker, S.C. Effective targeted gene ‘knockdown’ in zebrafish Nat. Genet., 26 (2000),pp. 216-220
|
[64] |
Ochiai, H., Sakamoto, N., Fujita, K. et al. Zinc-finger nuclease-mediated targeted insertion of reporter genes for quantitative imaging of gene expression in sea urchin embryos Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 10915-10920
|
[65] |
Parinov, S., Kondrichin, I., Korzh, V. et al. Dev. Dyn., 231 (2004),pp. 449-459
|
[66] |
Patton, E.E., Zon, L.I. The art and design of genetic screens: zebrafish Nat. Rev. Genet., 2 (2001),pp. 956-966
|
[67] |
Porteus, M.H., Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells Science, 300 (2003),p. 763
|
[68] |
Ramirez, C.L., Certo, M.T., Mussolino, C. et al. Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects Nucleic Acids Res., 40 (2012),pp. 5560-5568
|
[69] |
Ramirez, C.L., Foley, J.E., Wright, D.A. et al. Unexpected failure rates for modular assembly of engineered zinc fingers Nat. Methods, 5 (2008),pp. 374-375
|
[70] |
Reyon, D., Tsai, S.Q., Khayter, C. et al. FLASH assembly of TALENs for high-throughput genome editing Nat. Biotechnol., 30 (2012),pp. 460-465
|
[71] |
Robu, M.E., Larson, J.D., Nasevicius, A. et al. PLoS Genet., 3 (2007),p. e78
|
[72] |
Sander, J.D., Cade, L., Khayter, C. et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs Nat. Biotechnol., 29 (2011),pp. 697-698
|
[73] |
Sander, J.D., Dahlborg, E.J., Goodwin, M.J. et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA) Nat. Methods, 8 (2011),pp. 67-69
|
[74] |
Shestopalov, I.A., Pitt, C.L., Chen, J.K. Spatiotemporal resolution of the Ntla transcriptome in axial mesoderm development Nat. Chem. Biol., 8 (2012),pp. 270-276
|
[75] |
Shukla, V.K., Doyon, Y., Miller, J.C. et al. Nature, 459 (2009),pp. 437-441
|
[76] |
Siekmann, A.F., Standley, C., Fogarty, K.E. et al. Chemokine signaling guides regional patterning of the first embryonic artery Genes Dev., 23 (2009),pp. 2272-2277
|
[77] |
Solnica-Krezel, L., Schier, A.F., Driever, W. Efficient recovery of ENU-induced mutations from the zebrafish germline Genetics, 136 (1994),pp. 1401-1420
|
[78] |
Streubel, J., Blucher, C., Landgraf, A. et al. TAL effector RVD specificities and efficiencies Nat. Biotechnol., 30 (2012),pp. 593-595
|
[79] |
Su, J., Zhu, Z., Wang, Y. et al. Mar. Biotechnol. (NY), 10 (2008),pp. 262-269
|
[80] |
Su, J., Zhu, Z., Xiong, F. et al. Hybrid cytomegalovirus-U6 promoter-based plasmid vectors improve efficiency of RNA interference in zebrafish Mar. Biotechnol. (NY), 10 (2008),pp. 511-517
|
[81] |
Summerton, J. Morpholino antisense oligomers: the case for an RNase H-independent structural type Biochim. Biophys. Acta, 1489 (1999),pp. 141-158
|
[82] |
Summerton, J., Weller, D. Morpholino antisense oligomers: design, preparation, and properties Antisense Nucleic Acid Drug Dev., 7 (1997),pp. 187-195
|
[83] |
Tallafuss, A., Gibson, D., Morcos, P. et al. Turning gene function ON and OFF using sense and antisense photo-morpholinos in zebrafish Development, 139 (2012),pp. 1691-1699
|
[84] |
Tesson, L., Usal, C., Menoret, S. et al. Knockout rats generated by embryo microinjection of TALENs Nat. Biotechnol., 29 (2011),pp. 695-696
|
[85] |
Thummel, R., Bai, S., , Song, P. et al. Dev. Dyn., 235 (2006),pp. 336-346
|
[86] |
Thummel, R., Bailey, T.J., Hyde, D.R. J. Vis. Exp. (2011),p. e3603
|
[87] |
Tian, T., Zhao, L., Zhao, X.Y. et al. J. Genet. Genomics, 36 (2009),pp. 581-589
|
[88] |
Tong, C., Huang, G., Ashton, C. et al. Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs J. Genet. Genomics, 39 (2012),pp. 275-280
|
[89] |
Townsend, J.A., Wright, D.A., Winfrey, R.J. et al. High-frequency modification of plant genes using engineered zinc-finger nucleases Nature, 459 (2009),pp. 442-445
|
[90] |
Trinh, L.A., Hochgreb, T., Graham, M. et al. A versatile gene trap to visualize and interrogate the function of the vertebrate proteome Genes Dev., 25 (2011),pp. 2306-2320
|
[91] |
Urnov, F.D., Rebar, E.J., Holmes, M.C. et al. Genome editing with engineered zinc finger nucleases Nat. Rev. Genet., 11 (2010),pp. 636-646
|
[92] |
Walker, C., Streisinger, G. Induction of mutations by gamma-rays in pregonial germ cells of zebrafish embryos Genetics, 103 (1983),pp. 125-136
|
[93] |
Wang, D., Jao, L.-E., Zheng, N. et al. Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 12428-12433
|
[94] |
Wang, J., Friedman, G., Doyon, Y. et al. Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme Genome Res., 22 (2012),pp. 1316-1326
|
[95] |
Wienholds, E., Schulte-Merker, S., Walderich, B. et al. Science, 297 (2002),pp. 99-102
|
[96] |
Wood, A.J., Lo, T.W., Zeitler, B. et al. Targeted genome editing across species using ZFNs and TALENs Science, 333 (2011),p. 307
|
[97] |
Wu, X., Li, Y., Crise, B. et al. Transcription start regions in the human genome are favored targets for MLV integration Science, 300 (2003),pp. 1749-1751
|
[98] |
Wu, Y., Zhang, G., Xiong, Q. et al. Integration of double-fluorescence expression vectors into zebrafish genome for the selection of site-directed knockout/knockin Mar. Biotechnol. (NY), 8 (2006),pp. 304-311
|
[99] |
Xue, Y.L., Xiao, A., Wen, L. et al. Prog. Biochem. Biophys., 37 (2010),pp. 720-727
|
[100] |
Yang, D., Yang, H., Li, W. et al. Cell Res., 21 (2011),pp. 979-982
|
[101] |
Yu, S., Luo, J., Song, Z. et al. Cell Res., 21 (2011),pp. 1638-1640
|
[102] |
Zhao, L., Zhao, X., Tian, T. et al. Cardiovasc. Res., 80 (2008),pp. 200-208
|
[103] |
Zhao, Z., Cao, Y., Li, M. et al. Double-stranded RNA injection produces nonspecific defects in zebrafish Dev. Biol., 229 (2001),pp. 215-223
|
[104] |
Zhu, C., Smith, T., McNulty, J. et al. Evaluation and application of modularly assembled zinc-finger nucleases in zebrafish Development, 138 (2011),pp. 4555-4564
|