5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 9
Sep.  2012
Turn off MathJax
Article Contents

Myelopoiesis during Zebrafish Early Development

doi: 10.1016/j.jgg.2012.06.005
More Information
  • Corresponding author: E-mail address: zilong@ust.hk (Zilong Wen)
  • Received Date: 2012-05-02
  • Accepted Date: 2012-06-21
  • Rev Recd Date: 2012-06-21
  • Available Online: 2012-08-04
  • Publish Date: 2012-09-20
  • Myelopoiesis is the process of producing all types of myeloid cells including monocytes/macrophages and granulocytes. Myeloid cells are known to manifest a wide spectrum of activities such as immune surveillance and tissue remodeling. Irregularities in myeloid cell development and their function are known to associate with the onset and the progression of a variety of human disorders such as leukemia. In the past decades, extensive studies have been carried out in various model organisms to elucidate the molecular mechanisms underlying myelopoiesis with the hope that these efforts will yield knowledge translatable into therapies for related diseases. Zebrafish has recently emerged as a prominent animal model for studying myelopoiesis, especially during early embryogenesis, largely owing to its unique properties such as transparent embryonic body and external development. This review introduces the methodologies used in zebrafish research and focuses on the recent research progresses of zebrafish myelopoiesis.
  • loading
  • [1]
    Bennett, C.M., Kanki, J.P., Rhodes, J. et al. Blood, 98 (2001),pp. 643-651
    [2]
    Bertrand, J.Y., Chi, N.C., Santoso, B. et al. Haematopoietic stem cells derive directly from aortic endothelium during development Nature, 464 (2010),pp. 108-111
    [3]
    Bertrand, J.Y., Kim, A.D., Violette, E.P. et al. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo Development, 134 (2007),pp. 4147-4456
    [4]
    Bolli, N., Payne, E.M., Grabher, C. et al. Blood, 115 (2010),pp. 3329-3340
    [5]
    Bukrinsky, A., Griffin, K.J., Zhao, Y. et al. Essential role of spi-1-like (spi-1l) in zebrafish myeloid cell differentiation Blood, 113 (2009),pp. 2038-2046
    [6]
    Colucci-Guyon, E., Tinevez, J.Y., Renshaw, S.A. et al. J. Cell Sci., 124 (2011),pp. 3053-3059
    [7]
    Corkery, D.P., Dellaire, G., Berman, J.N. Br. J. Haematol., 153 (2011),pp. 786-789
    [8]
    Craven, S.E., French, D., Ye, W. et al. Loss of Hspa9b in zebrafish recapitulates the ineffective hematopoiesis of the myelodysplastic syndrome Blood, 105 (2005),pp. 3528-3534
    [9]
    Daas, S.I., Coombs, A.J., Balci, T.B. et al. Blood, 119 (2012),pp. 3585-3594
    [10]
    Dai, Z.X., Yan, G., Chen, Y.H. et al. Forward genetic screening for zebrafish mutants defective in myelopoiesis J. South Med. Univ., 30 (2010),pp. 1230-1233
    [11]
    Dayyani, F., Wang, J., Yeh, J.R. et al. Loss of TLE1 and TLE4 from the del(9q) commonly deleted region in AML cooperates with AML1-ETO to affect myeloid cell proliferation and survival Blood, 111 (2008),pp. 4338-4347
    [12]
    Dobson, J.T., Seibert, J., Teh, E.M. et al. Carboxypeptidase A5 identifies a novel mast cell lineage in the zebrafish providing new insight into mast cell fate determination Blood, 112 (2008),pp. 2969-2972
    [13]
    Doyon, Y., McCammon, J.M., Miller, J.C. et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases Nat. Biotechnol., 26 (2008),pp. 702-708
    [14]
    Draper, B.W., Morcos, P.A., Kimmel, C.B. Genesis, 30 (2001),pp. 154-156
    [15]
    Driever, W., Solnica-Krezel, L., Schier, A.F. et al. A genetic screen for mutations affecting embryogenesis in zebrafish Development, 123 (1996),pp. 37-46
    [16]
    Ellett, F., Lieschke, G.J. Zebrafish as a model for vertebrate hematopoiesis Curr. Opin. Pharmacol., 10 (2010),pp. 563-570
    [17]
    Ellett, F., Pase, L., Hayman, J.W. et al. Blood, 117 (2011),pp. e49-e56
    [18]
    Forrester, A.M., Grabher, C., McBride, E.R. et al. NUP98-HOXA9-transgenic zebrafish develop a myeloproliferative neoplasm and provide new insight into mechanisms of myeloid leukaemogenesis Br. J. Haematol., 155 (2011),pp. 167-181
    [19]
    Galloway, J.L., Wingert, R.A., Thisse, C. et al. Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos Dev. Cell, 8 (2005),pp. 109-116
    [20]
    Haffter, P., Granato, M., Brand, M. et al. Development, 123 (1996),pp. 1-36
    [21]
    Hall, C., Flores, M.V., Storm, T. et al. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish BMC Dev. Biol., 7 (2007),p. 42
    [22]
    Herbomel, P., Levraud, J.P. Imaging early macrophage differentiation, migration, and behaviors in live zebrafish embryos Methods Mol. Med., 105 (2005),pp. 199-214
    [23]
    Herbomel, P., Thisse, B., Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo Development, 126 (1999),pp. 3735-3745
    [24]
    Herbomel, P., Thisse, B., Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process Dev. Biol., 238 (2001),pp. 274-288
    [25]
    Hogan, B.M., Layton, J.E., Pyati, U.J. et al. Specification of the primitive myeloid precursor pool requires signaling through Alk8 in zebrafish Curr. Biol., 16 (2006),pp. 506-511
    [26]
    Hsu, K., Traver, D., Kutok, J.L. et al. Blood, 104 (2004),pp. 1291-1297
    [27]
    Huang, P., Xiao, A., Zhou, M. et al. Heritable gene targeting in zebrafish using customized TALENs Nat. Biotechnol., 29 (2011),pp. 699-700
    [28]
    Jin, H., Li, L., Xu, J. et al. Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop that confines Pu.1 expression Blood, 119 (2012),pp. 5239-5249
    [29]
    Jin, H., Sood, R., Xu, J. et al. Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI Development, 136 (2009),pp. 647-654
    [30]
    Jin, H., Xu, J., Wen, Z. Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development Blood, 109 (2007),pp. 5208-5214
    [31]
    Jing, L., Zon, L.I. Zebrafish as a model for normal and malignant hematopoiesis Dis. Model Mech., 4 (2011),pp. 433-438
    [32]
    Keegan, B.R., Meyer, D., Yelon, D. Organization of cardiac chamber progenitors in the zebrafish blastula Development, 131 (2004),pp. 3081-3091
    [33]
    Kissa, K., Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition Nature, 464 (2010),pp. 112-115
    [34]
    Kissa, K., Murayama, E., Zapata, A. et al. Live imaging of emerging hematopoietic stem cells and early thymus colonization Blood, 111 (2008),pp. 1147-1156
    [35]
    Kitaguchi, T., Kawakami, K., Kawahara, A. Transcriptional regulation of a myeloid-lineage specific gene lysozyme C during zebrafish myelopoiesis Mech. Dev., 126 (2009),pp. 314-323
    [36]
    Le Guyader, D., Redd, M.J., Colucci-Guyon, E. et al. Origins and unconventional behavior of neutrophils in developing zebrafish Blood, 111 (2008),pp. 132-141
    [37]
    Le, X., Langenau, D.M., Keefe, M.D. et al. Heat shock-inducible Cre/Lox approaches to induce diverse types of tumors and hyperplasia in transgenic zebrafish Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 9410-9415
    [38]
    Li, L., Jin, H., Xu, J. et al. Blood, 117 (2011),pp. 1359-1369
    [39]
    Liao, E.C., Paw, B.H., Oates, A.C. et al. SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish Genes Dev., 12 (1998),pp. 621-626
    [40]
    Lieschke, G.J., Oates, A.C., Crowhurst, M.O. et al. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish Blood, 98 (2001),pp. 3087-3096
    [41]
    Lieschke, G.J., Oates, A.C., Paw, B.H. et al. Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning Dev. Biol., 246 (2002),pp. 274-295
    [42]
    Liongue, C., Hall, C.J., O'Connell, B.A. et al. Zebrafish granulocyte colony-stimulating factor receptor signaling promotes myelopoiesis and myeloid cell migration Blood, 113 (2009),pp. 2535-2546
    [43]
    Liu, F., Patient, R. Genome-wide analysis of the zebrafish ETS family identifies three genes required for hemangioblast differentiation or angiogenesis Circ. Res., 103 (2008),pp. 1147-1154
    [44]
    Liu, F., Wen, Z. Cloning and expression pattern of the lysozyme C gene in zebrafish Mech. Dev., 113 (2002),pp. 69-72
    [45]
    Lugo-Villarino, G., Balla, K.M., Stachura, D.L. et al. Identification of dendritic antigen-presenting cells in the zebrafish Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 15850-15855
    [46]
    Mathias, J.R., Perrin, B.J., Liu, T.X. et al. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish J. Leukoc. Biol., 80 (2006),pp. 1281-1288
    [47]
    Monteiro, R., Pouget, C., Patient, R. The gata1/pu.1 lineage fate paradigm varies between blood populations and is modulated by tif1gamma EMBO J., 30 (2011),pp. 1093-1103
    [48]
    Murayama, E., Kissa, K., Zapata, A. et al. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development Immunity, 25 (2006),pp. 963-975
    [49]
    Nasevicius, A., Ekker, S.C. Effective targeted gene ‘knockdown’ in zebrafish Nat. Genet., 26 (2000),pp. 216-220
    [50]
    Payne, E.M., Bolli, N., Rhodes, J. et al. Ddx18 is essential for cell-cycle progression in zebrafish hematopoietic cells and is mutated in human AML Blood, 118 (2011),pp. 903-915
    [51]
    Peri, F., Nusslein-Volhard, C. Cell, 133 (2008),pp. 916-927
    [52]
    Peterson, R.T., Link, B.A., Dowling, J.E. et al. Small molecule developmental screens reveal the logic and timing of vertebrate development Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 12965-12969
    [53]
    Peterson, R.T., Shaw, S.Y., Peterson, T.A. et al. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation Nat. Biotechnol., 22 (2004),pp. 595-599
    [54]
    Pruvot, B., Jacquel, A., Droin, N. et al. Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy Haematologica, 96 (2011),pp. 612-616
    [55]
    Renshaw, S.A., Loynes, C.A., Trushell, D.M. et al. A transgenic zebrafish model of neutrophilic inflammation Blood, 108 (2006),pp. 3976-3978
    [56]
    Rhodes, J., Hagen, A., Hsu, K. et al. Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish Dev. Cell, 8 (2005),pp. 97-108
    [57]
    Ridges, S., Heaton, W.L., Joshi, D. et al. Zebrafish screen identifies novel compound with selective toxicity against leukemia Blood, 119 (2012),pp. 5621-5631
    [58]
    Sander, J.D., Cade, L., Khayter, C. et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs Nat. Biotechnol., 29 (2011),pp. 697-698
    [59]
    Schoenebeck, J.J., Keegan, B.R., Yelon, D. Vessel and blood specification override cardiac potential in anterior mesoderm Dev. Cell, 13 (2007),pp. 254-267
    [60]
    Serluca, F.C., Fishman, M.C. Cell lineage tracing in heart development Methods Cell Biol., 59 (1999),pp. 359-365
    [61]
    Serluca, F.C., Fishman, M.C. Pre-pattern in the pronephric kidney field of zebrafish Development, 128 (2001),pp. 2233-2241
    [62]
    Stainier, D.Y., Weinstein, B.M., , Zon, L.I. et al. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages Development, 121 (1995),pp. 3141-3150
    [63]
    Su, F., Juarez, M.A., Cooke, C.L. et al. Differential regulation of primitive myelopoiesis in the zebrafish by Spi-1/Pu.1 and C/ebp1 Zebrafish, 4 (2007),pp. 187-199
    [64]
    Sumanas, S., Gomez, G., Zhao, Y. et al. Interplay among Etsrp/ER71, Scl, and Alk8 signaling controls endothelial and myeloid cell formation Blood, 111 (2008),pp. 4500-4510
    [65]
    Sumanas, S., Lin, S. Ets1-related protein is a key regulator of vasculogenesis in zebrafish PLoS Biol., 4 (2006),p. e10
    [66]
    Thompson, M.A., Ransom, D.G., Pratt, S.J. et al. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis Dev. Biol., 197 (1998),pp. 248-269
    [67]
    Vogeli, K.M., Jin, S.W., Martin, G.R. et al. A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula Nature, 443 (2006),pp. 337-339
    [68]
    Ward, A.C., McPhee, D.O., Condron, M.M. et al. Blood, 102 (2003),pp. 3238-3240
    [69]
    Warga, R.M., Kane, D.A., Ho, R.K. Fate mapping embryonic blood in zebrafish: multi- and unipotential lineages are segregated at gastrulation Dev. Cell, 16 (2009),pp. 744-755
    [70]
    Wei, W., Wen, L., Huang, P. et al. Gfi1.1 regulates hematopoietic lineage differentiation during zebrafish embryogenesis Cell Res., 18 (2008),pp. 677-685
    [71]
    Wienholds, E., Koudijs, M.J., van Eeden, F.J. et al. The microRNA-producing enzyme Dicer1 is essential for zebrafish development Nat. Genet., 35 (2003),pp. 217-218
    [72]
    Wienholds, E., Schulte-Merker, S., Walderich, B. et al. Science, 297 (2002),pp. 99-102
    [73]
    Willett, C.E., Cortes, A., Zuasti, A. et al. Early hematopoiesis and developing lymphoid organs in the zebrafish Dev. Dyn., 214 (1999),pp. 323-336
    [74]
    Wittamer, V., Bertrand, J.Y., Gutschow, P.W. et al. Characterization of the mononuclear phagocyte system in zebrafish Blood, 117 (2011),pp. 7126-7135
    [75]
    Yeh, J.R., Munson, K.M., Chao, Y.L. et al. AML1-ETO reprograms hematopoietic cell fate by downregulating scl expression Development, 135 (2008),pp. 401-410
    [76]
    Yeh, J.R., Munson, K.M., Elagib, K.E. et al. Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation Nat. Chem. Biol., 5 (2009),pp. 236-243
    [77]
    Yuan, H., Zhou, J., Deng, M. et al. Sumoylation of CCAAT/enhancer-binding protein alpha promotes the biased primitive hematopoiesis of zebrafish Blood, 117 (2011),pp. 7014-7020
    [78]
    Zakrzewska, A., Cui, C., Stockhammer, O.W. et al. Macrophage-specific gene functions in Spi1-directed innate immunity Blood, 116 (2010),pp. e1-e11
    [79]
    Zhang, Y., Bai, X.T., Zhu, K.Y. et al. J. Immunol., 181 (2008),pp. 2155-2164
    [80]
    Zhuravleva, J., Paggetti, J., Martin, L. et al. MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish Br. J. Haematol., 143 (2008),pp. 378-382
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (68) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return