5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 7
Jul.  2012
Turn off MathJax
Article Contents

A Pyramid Breeding of Eight Grain-yield Related Quantitative Trait Loci Based on Marker-assistant and Phenotype Selection in Rice (Oryza sativa L.)

doi: 10.1016/j.jgg.2012.06.004
More Information
  • Corresponding author: E-mail address: bhan@ncgr.ac.cn (Bin Han)
  • Received Date: 2012-04-18
  • Accepted Date: 2012-06-18
  • Rev Recd Date: 2012-05-17
  • Available Online: 2012-06-29
  • Publish Date: 2012-07-20
  • 1000-Grain weight and spikelet number per panicle are two important components for rice grain yield. In our previous study, eight quantitative trait loci (QTLs) conferring spikelet number per panicle and 1000-grain weight were mapped through sequencing-based genotyping of 150 rice recombinant inbred lines (RILs). In this study, we validated the effects of four QTLs from Nipponbare using chromosome segment substitution lines (CSSLs), and pyramided eight grain yield related QTLs. The new lines containing the eight QTLs with positive effects showed increased panicle and spikelet size as compared with the parent variety 93-11. We further proposed a novel pyramid breeding scheme based on marker-assistant and phenotype selection (MAPS). This scheme allowed pyramiding of as many as 24 QTLs at a single hybridization without massive cross work. This study provided insights into the molecular basis of rice grain yield for direct wealth for high-yielding rice breeding.
  • loading
  • [1]
    Asano, K., Yamasaki, M., Takuno, S. et al. Artificial selection for a green revolution gene during japonica rice domestication Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 11034-11039
    [2]
    Ashikari, M., Matsuoka, M. Identification, isolation and pyramiding of quantitative trait loci for rice breeding Trends Plant Sci., 11 (2006),pp. 344-350
    [3]
    Ashikari, M., Sakakibara, H., Lin, S. et al. Cytokinin oxidase regulates rice grain production Science, 309 (2005),pp. 741-745
    [4]
    Atwell, S., Huang, Y.S., Vilhjalmsson, B.J. et al. Nature, 465 (2010),pp. 627-631
    [5]
    Broman, K.W., Wu, H., Sen, S. et al. R/qtl: QTL mapping in experimental crosses Bioinformatics, 19 (2003),pp. 889-890
    [6]
    Chen, L., Zhao, Z., Liu, X. et al. Mol. Breeding, 27 (2010),pp. 247-258
    [7]
    Ding, X., Li, X., Xiong, L. Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number, and root volume in rice Theor. Appl. Genet., 123 (2011),pp. 815-826
    [8]
    Fan, C., Xing, Y., Mao, H. et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein Theor. Appl. Genet., 112 (2006),pp. 1164-1171
    [9]
    George, A.
    [10]
    Gore, M.A., Chia, J.M., Elshire, R.J. et al. A first-generation haplotype map of maize Science, 326 (2009),pp. 1115-1117
    [11]
    Hayashi, K., Yoshida, H., Ashikawa, I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes Theor. Appl. Genet., 113 (2006),pp. 251-260
    [12]
    Huang, N., Angeles, E.R., Domingo, J. et al. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR Theor. Appl. Genet., 95 (1997),pp. 313-320
    [13]
    Huang, X.H., Feng, Q., Qian, Q. et al. High-throughput genotyping by whole-genome resequencing Genome Res., 19 (2009),pp. 1068-1076
    [14]
    Huang, X., Qian, Q., Liu, Z. et al. Natural variation at the DEP1 locus enhances grain yield in rice Nat. Genet., 41 (2009),pp. 494-497
    [15]
    Huang, X.H., Wei, X.H., Sang, T. et al. Genome-wide association studies of 14 agronomic traits in rice landraces Nat. Genet., 42 (2010),pp. 961-976
    [16]
    Kurakawa, T., Ueda, N., Maekawa, M. et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme Nature, 445 (2007),pp. 652-655
    [17]
    Lai, X.H., Hinga, M.E., Lobos, K.B. et al. Theor. Appl. Genet., 107 (2003),pp. 479-493
    [18]
    Lander, E.S., Green, P., Abrahamson, J. et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations Genomics, 93 (2009),p. 398
    [19]
    Li, J.X., Yu, S.B., Xu, C.G. et al. Theor. Appl. Genet., 101 (2000),pp. 248-254
    [20]
    Li, J., Thomson, M., McCouch, S.R. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3 Genetics, 168 (2004),pp. 2187-2195
    [21]
    Li, Y., Fan, C., Xing, Y. et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice Nat. Genet., 43 (2011),pp. 1266-1269
    [22]
    Lin, H.X., Qian, H.R., Zhuang, J.Y. et al. Theor. Appl. Genet., 92 (1996),pp. 920-927
    [23]
    Lin, X.H., Xu, C.G., Zhang, Q.F. Improvement of bacterial blight resistance of ‘Minghui 63’, an elite Restorer line of hybrid rice, by molecular marker-assisted selection Crop Sci., 40 (2000),pp. 239-244
    [24]
    Lu, C., Shen, L., Tan, Z. et al. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population Theor. Appl. Genet., 93 (1996),pp. 1211-1217
    [25]
    Mao, H., Sun, S., Yao, J. et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 19579-19584
    [26]
    McCouch, S.R., Teytelman, L., Xu, Y. et al. DNA Res., 9 (2002),pp. 199-207
    [27]
    Nordborg, M., Weigel, D. Next-generation genetics in plants Nature, 456 (2008),pp. 720-723
    [28]
    Redona, E.D., Mackill, D.J. Quantitative trait locus analysis for rice panicle and grain characteristics Theor. Appl. Genet., 96 (1998),pp. 957-963
    [29]
    Ribaut, J.M., Betran, J. Single large-scale marker-assisted selection (SLS-MAS) Mol. Breeding, 5 (1999),pp. 531-541
    [30]
    Rogers, S.O., Bandich, A.J.
    [31]
    Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M. et al. Green revolution: a mutant gibberellin-synthesis gene in rice Nature, 416 (2002),pp. 701-702
    [32]
    Shomura, A., Izawa, T., Ebana, K. et al. Deletion in a gene associated with grain size increased yields during rice domestication Nat. Genet., 40 (2008),pp. 1023-1028
    [33]
    Song, X.J., Huang, W., Shi, M. et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase Nat. Genet., 39 (2007),pp. 623-630
    [34]
    Venkateswarlu, B., Visperas, R.M. Source-sink relationships in crop plants Int. Rice Research Paper Series, 125 (1987),pp. 1-19
    [35]
    Wang, S., Basten, C.J., Zeng, Z.B.
    [36]
    Wang, L., Wang, A., Huang, X. et al. Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines Theor. Appl. Genet., 122 (2010),pp. 327-340
    [37]
    Xu, J., Zhao, Q., Du, P. et al. BMC Genomics, 11 (2010),p. 656
    [38]
    Zhang, Y.M., Xu, S. Mapping quantitative trait loci in F2 incorporating phenotypes of F3 progeny Genetics, 166 (2004),pp. 1981-1993
    [39]
    Zhou, P.Z., Tan, Y.T., He, Y.H. et al. Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection Theor. Appl. Genet., 106 (2003),pp. 326-331
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (102) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return