5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 7
Jul.  2012
Turn off MathJax
Article Contents

Whole Genome Duplication of Intra- and Inter-chromosomes in the Tomato Genome

doi: 10.1016/j.jgg.2012.06.002
More Information
  • Corresponding author: E-mail address: yingwang@wbgcas.cn (Ying Wang)
  • Received Date: 2012-06-13
  • Accepted Date: 2012-06-17
  • Rev Recd Date: 2012-06-17
  • Available Online: 2012-06-22
  • Publish Date: 2012-07-20
  • Whole genome duplication (WGD) events have been proven to occur in the evolutionary history of most angiosperms. Tomato is considered a model species of the Solanaceae family. In this study, we describe the details of the evolutionary process of the tomato genome by detecting collinearity blocks and dating the WGD events on the tree of life by combining two different methods: synonymous substitution rates (Ks) and phylogenetic trees. In total, 593 collinearity blocks were discovered out of 12 pseudo-chromosomes constructed. It was evident that chromosome 2 had experienced an intra-chromosomal duplication event. Major inter-chromosomal duplication occurred among all the pseudo-chromosome. We calculated the Ks value of these collinearity blocks. Two peaks of Ks distribution were found, corresponding to two WGD events occurring approximately 36–82 million years ago (MYA) and 148–205 MYA. Additionally, the results of phylogenetic trees suggested that the more recent WGD event may have occurred after the divergence of the rosid-asterid clade, but before the major diversification in Solanaceae. The older WGD event was shown to have occurred before the divergence of the rosid-asterid clade and after the divergence of rice-Arabidopsis (monocot-dicot).
  • loading
  • [1]
    Altschul, S.F., Gish, W., Miller, W. et al. Basic local alignment search tool J. Mol. Biol., 215 (1990),pp. 403-410
    [2]
    Bell, C.D., Soltis, D.E., Soltis, P.S. The age of the angiosperms: a molecular timescale without a clock Evolution, 59 (2005),pp. 1245-1258
    [3]
    Bennetzen, J.L. Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions Plant Cell, 12 (2000),pp. 1021-1029
    [4]
    Birney, E., Clamp, M., Durbin, R. Genewise and genomewise Genome Res., 14 (2004),pp. 988-995
    [5]
    Blanc, G., Barakat, A., Guyot, R. et al. Plant Cell, 12 (2000),pp. 1093-1101
    [6]
    Blanc, G., Hokamp, K., Wolfe, K.H. Genome Res., 13 (2003),pp. 137-144
    [7]
    Blanc, G., Wolfe, K.H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes Plant Cell, 16 (2004),pp. 1667-1678
    [8]
    Bowers, J.E., Chapman, B.A., Rong, J.K. et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events Nature, 422 (2003),pp. 433-438
    [9]
    Bowers, J.E., Arias, M.A., Asher, R. et al. Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 13206-13211
    [10]
    Chapman, B.A., Bowers, J.E., Schulze, S.R. et al. A comparative phylogenetic approach for dating whole genome duplication events Bioinformatics, 20 (2004),pp. 180-185
    [11]
    Cui, L.Y., Wall, P.K., Leebens-Mack, J.H. et al. Widespread genome duplications throughout the history of flowering plants Genome Res., 16 (2006),pp. 738-749
    [12]
    Hileman, L.C., Sundstrom, J.F., Litt, A. et al. Molecular and phylogenetic analyses of the mads-box gene family in tomato Mol. Biol. Evol., 23 (2006),pp. 2245-2258
    [13]
    Jaillon, O., Aury, J.M., Noel, B. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla Nature, 449 (2007),pp. 463-467
    [14]
    Jansen, R.K., Kaittanis, C., Saski, C. et al. BMC Evol. Biol., 6 (2006),pp. 32-45
    [15]
    Kim, C., Tang, H., Paterson, A.H. Duplication and divergence of grass genomes: integrating the chloridoids Trop. Plant Biol., 2 (2009),pp. 51-62
    [16]
    Lagercrantz, U. Genetics, 150 (1998),pp. 1217-1228
    [17]
    Li, C., Zhao, J., Jiang, H. et al. A snapshot of the Chinese SOL project J. Genet. Genomics, 35 (2008),pp. 387-390
    [18]
    Li, W.-H., Li, W.H.
    [19]
    Lynch, M., Conery, J.S. The evolutionary fate and consequences of duplicate genes Science, 290 (2000),pp. 1151-1155
    [20]
    Navajas-Perez, R., Paterson, A.H. Patterns of tandem repetition in plant whole genome assemblies Mol. Genet. Genomics, 281 (2009),pp. 579-590
    [21]
    Ohno, S.
    [22]
    Paterson, A.H., Bowers, J.E., Burow, M.D. et al. Comparative genomics of plant chromosomes Plant Cell, 12 (2000),pp. 1523-1540
    [23]
    Paterson, A.H., Bowers, J.E., Chapman, B.A. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 9903-9908
    [24]
    Paterson, A.H., Bowers, J.E., Bruggmann, R. et al. Nature, 457 (2009),pp. 551-556
    [25]
    Rost, B. Twilight zone of protein sequence alignments Protein Eng., 12 (1999),pp. 85-94
    [26]
    Schlueter, J.A., Dixon, P., Granger, C. et al. Mining EST databases to resolve evolutionary events in major crop species Genome, 47 (2004),pp. 868-876
    [27]
    Simillion, C., Vandepoele, K., Saeys, Y. et al. Building genomic profiles for uncovering segmental homology in the twilight zone Genome Res., 14 (2004),pp. 1095-1106
    [28]
    Soltis, D.E., Soltis, P.S., Chase, M.W. et al. Angiosperm phylogeny inferred from 18s rDNA, rbcL, and atpB sequences Bot. J. Linn. Soc., 133 (2000),pp. 381-461
    [29]
    Soltis, D.E., Albert, V.A., Leebens-Mack, J. et al. Polyploidy and angiosperm diversification Am. J. Bot., 96 (2009),pp. 336-348
    [30]
    The potato genome sequencing consortium Genome sequence and analysis of the tuber crop potato Nature, 475 (2011),pp. 189-195
    [31]
    The tomato genome consortium The tomato genome sequence provides insights into fleshy fruit evolution Nature, 485 (2012),pp. 635-641
    [32]
    Thompson, J.D., Higgins, D.G., Gibson, T.J. Clustal-w – improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Nucleic Acids Res., 22 (1994),pp. 4673-4680
    [33]
    Tuskan, G.A., DiFazio, S., Jansson, S. et al. Science, 313 (2006),pp. 1596-1604
    [34]
    Vandepoele, K., Simillion, C., Van de Peer, Y. Evidence that rice and other cereals are ancient aneuploids Plant Cell, 15 (2003),pp. 2192-2202
    [35]
    Velasco, R., Zharkikh, A., Troggio, M. et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety PLoS ONE, 2 (2007),p. e1326
    [36]
    Yang, Z.H. Paml 4: phylogenetic analysis by maximum likelihood Mol. Biol. Evol., 24 (2007),pp. 1586-1591
    [37]
    Yu, J., Wang, J., Lin, W. et al. PLoS Biol., 3 (2005),pp. 266-281
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (89) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return