5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 8
Aug.  2012
Turn off MathJax
Article Contents

A Systematic Phenotypic Screen of F-box Genes Through a Tissue-specific RNAi-based Approach in Drosophila

doi: 10.1016/j.jgg.2012.05.009
More Information
  • Corresponding author: E-mail address: jun.ma@cchmc.org (Jun Ma); E-mail address: rjiao@sun5.ibp.ac.cn (Renjie Jiao)
  • Received Date: 2012-04-23
  • Accepted Date: 2012-05-30
  • Rev Recd Date: 2012-05-25
  • Available Online: 2012-07-14
  • Publish Date: 2012-08-20
  • F-box proteins are components of the SCF (SkpA-Cullin 1-F-box) E3 ligase complexes, acting as the specificity-determinants in targeting substrate proteins for ubiquitination and degradation. In humans, at least 22 out of 75 F-box proteins have experimentally documented substrates, whereas in Drosophila 12 F-box proteins have been characterized with known substrates. To systematically investigate the genetic and molecular functions of F-box proteins in Drosophila, we performed a survey of the literature and databases. We identified 45 Drosophila genes that encode proteins containing at least one F-box domain. We collected publically available RNAi lines against these genes and used them in a tissue-specific RNAi-based phenotypic screen. Here, we present our systematic phenotypic dataset from the eye, the wing and the notum. This dataset is the first of its kind and represents a useful resource for future studies of the molecular and genetic functions of F-box genes in Drosophila. Our results show that, as expected, F-box genes in Drosophila have regulatory roles in a diverse array of processes including cell proliferation, cell growth, signal transduction, and cellular and animal survival.
  • loading
  • [1]
    Azpiazu, N., Morata, G. Development, 127 (2000),pp. 2685-2693
    [2]
    Bader, M., Arama, E., Steller, H. Development, 137 (2010),pp. 1679-1688
    [3]
    Bai, C., Sen, P., Hofmann, K. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box Cell, 86 (1996),pp. 263-274
    [4]
    Berkers, C.R., Ovaa, H. Drug discovery and assay development in the ubiquitin–proteasome system Biochem. Soc. Trans., 38 (2010),pp. 14-20
    [5]
    Boulton, S.J., Brook, A., Staehling-Hampton, K. et al. A role for Ebi in neuronal cell cycle control EMBO J., 19 (2000),pp. 5376-5386
    [6]
    Brand, A.H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes Development, 118 (1993),pp. 401-415
    [7]
    Calleja, M., Herranz, H., Estella, C. et al. Development, 127 (2000),pp. 3971-3980
    [8]
    Catic, A., Ploegh, H.L. Ubiquitin–conserved protein or selfish gene? Trends Biochem. Sci., 30 (2005),pp. 600-604
    [9]
    Cenciarelli, C., Chiaur, D.S., Guardavaccaro, D. et al. Identification of a family of human F-box proteins Curr. Biol., 9 (1999),pp. 1177-1179
    [10]
    Chanas, G., Lavrov, S., Iral, F. et al. Engrailed and polyhomeotic maintain posterior cell identity through cubitus-interruptus regulation Dev. Biol., 272 (2004),pp. 522-535
    [11]
    Chen, Y., Dui, W., Yu, Z. et al. Protein Cell, 1 (2010),pp. 478-490
    [12]
    Ciechanover, A. The ubiquitin–proteasome pathway: on protein death and cell life EMBO J., 17 (1998),pp. 7151-7160
    [13]
    Ciechanover, A., Schwartz, A.L. The ubiquitin–proteasome pathway: the complexity and myriad functions of proteins death Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 2727-2730
    [14]
    Coon, T.A., Glasser, J.R., Mallampalli, R.K. et al. Novel E3 ligase component FBXL7 ubiquitinates and degrades Aurora A, causing mitotic arrest Cell Cycle, 11 (2012),pp. 721-729
    [15]
    Couso, J.P., Bate, M., Martinez-Arias, A. Science, 259 (1993),pp. 484-489
    [16]
    Cunha-Ferreira, I., Rodrigues-Martins, A., Bento, I. et al. The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4 Curr. Biol., 19 (2009),pp. 43-49
    [17]
    Czerny, T., Halder, G., Kloter, U. et al. Mol. Cell, 3 (1999),pp. 297-307
    [18]
    Das, T., Purkayastha-Mukherjee, C., D'Angelo, J. et al. A conserved F-box gene with unusual transcript localization Dev. Genes Evol., 212 (2002),pp. 134-140
    [19]
    DiNardo, S., Kuner, J.M., Theis, J. et al. Cell, 43 (1985),pp. 59-69
    [20]
    Dong, X., Tsuda, L., Zavitz, K.H. et al. Genes Dev., 13 (1999),pp. 954-965
    [21]
    Ghorbani, M., Vasavan, B., Kraja, E. et al. Dev. Biol., 358 (2011),pp. 213-223
    [22]
    Giagtzoglou, N., Koumbanakis, K.A., Fullard, J. et al. Role of the Sc C terminus in transcriptional activation and E(spl) repressor recruitment J. Biol. Chem., 280 (2005),pp. 1299-1305
    [23]
    Giot, L., Bader, J.S., Brouwer, C. et al. Science, 302 (2003),pp. 1727-1736
    [24]
    Glickman, M.H., Ciechanover, A. The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction Physiol. Rev., 82 (2002),pp. 373-428
    [25]
    Gong, P., Han, J., Reddig, K. et al. A potential dimerization region of dCAMTA is critical for termination of fly visual response J. Biol. Chem., 282 (2007),pp. 21253-21258
    [26]
    Grima, B., Lamouroux, A., Chelot, E. et al. The F-box protein slimb controls the levels of clock proteins period and timeless Nature, 420 (2002),pp. 178-182
    [27]
    Harrison, D.A., Binari, R., Nahreini, T.S. et al. EMBO J., 14 (1995),pp. 2857-2865
    [28]
    Hatakeyama, S., Nakayama, K.I. Ubiquitylation as a quality control system for intracellular proteins J. Biochem., 134 (2003),pp. 1-8
    [29]
    Hauck, B., Gehring, W.J., Walldorf, U. Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 564-569
    [30]
    Hays, R., Wickline, L., Cagan, R. Nat. Cell Biol., 4 (2002),pp. 425-431
    [31]
    Hazelett, D.J., Bourouis, M., Walldorf, U. et al. Decapentaplegic and wingless are regulated by eyes absent and eyegone and interact to direct the pattern of retinal differentiation in the eye disc Development, 125 (1998),pp. 3741-3751
    [32]
    Ho, M.S., Tsai, P.I., Chien, C.T. F-box proteins: the key to protein degradation J. Biomed. Sci., 13 (2006),pp. 181-191
    [33]
    Hochstrasser, M. Origin and function of ubiquitin-like proteins Nature, 458 (2009),pp. 422-429
    [34]
    Hu, J., Zacharek, S., He, Y.J. et al. WD40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1-CUL4-ROC1 ligase Genes Dev., 22 (2008),pp. 866-871
    [35]
    Jiang, J., Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein slimb Nature, 391 (1998),pp. 493-496
    [36]
    Jin, J., Cardozo, T., Lovering, R.C. et al. Systematic analysis and nomenclature of mammalian F-box proteins Genes Dev., 18 (2004),pp. 2573-2580
    [37]
    Kavi, H.H., Birchler, J.A. BMC Res. Notes, 2 (2009),p. 217
    [38]
    Kipreos, E.T., Pagano, M. The F-box protein family Genome Biol., 1 (2000)
    [39]
    Koepp, D.M., Schaefer, L.K., Ye, X. et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase Science, 294 (2001),pp. 173-177
    [40]
    Koh, K., Zheng, X., Sehgal, A. Science, 312 (2006),pp. 1809-1812
    [41]
    Kronhamn, J., Frei, E., Daube, M. et al. Headless flies produced by mutations in the paralogous Pax6 genes eyeless and twin of eyeless Development, 129 (2002),pp. 1015-1026
    [42]
    Kugler, J.M., Woo, J.S., Oh, B.H. et al. Mol. Cell Biol., 30 (2010),pp. 1769-1782
    [43]
    Kwon, M., Godinho, S.A., Chandhok, N.S. et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes Genes Dev., 22 (2008),pp. 2189-2203
    [44]
    Kumar, D., Chugh, J., Sharma, S. et al. Proteins, 76 (2009),pp. 387-402
    [45]
    Lagarou, A., Mohd-Sarip, A., Moshkin, Y.M. et al. dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing Genes Dev., 22 (2008),pp. 2799-2810
    [46]
    Lee, T., Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis Neuron, 22 (1999),pp. 451-461
    [47]
    Lee, Y.S., Pressman, S., Andress, A.P. et al. Silencing by small RNAs is linked to endosomal trafficking Nat. Cell Biol., 11 (2009),pp. 1150-1156
    [48]
    Liu, J., Ma, J. Nat. Cell Biol., 13 (2011),pp. 22-29
    [49]
    Masucci, J.D., Miltenberger, R.J., Hoffmann, F.M. Genes Dev., 4 (1990),pp. 2011-2023
    [50]
    Moberg, K.H., Bell, D.W., Wahrer, D.C. et al. Nature, 413 (2001),pp. 311-316
    [51]
    Moberg, K.H., Mukherjee, A., Veraksa, A. et al. Curr. Biol., 14 (2004),pp. 965-974
    [52]
    Moreno-Moreno, O., Medina-Giro, S., Torras-Llort, M. et al. Curr. Biol., 21 (2011),pp. 1488-1493
    [53]
    Mortimer, N.T., Moberg, K.H. Dev. Biol., 312 (2007),pp. 560-571
    [54]
    Nalepa, G., Rolfe, M., Harper, J.W. Drug discovery in the ubiquitin–proteasome system Nat. Rev. Drug Discov., 5 (2006),pp. 596-613
    [55]
    Nicholson, S.C., Gilbert, M.M., Nicolay, B.N. et al. Curr. Biol., 19 (2009),pp. 1503-1510
    [56]
    Orlowski, R.Z. The role of the ubiquitin–proteasome pathway in apoptosis Cell Death Differ., 6 (1999),pp. 303-313
    [57]
    Ou, C.Y., Pi, H., Chien, C.T. Trends Genet., 19 (2003),pp. 382-389
    [58]
    Patel, N.H., Martin-Blanco, E., Coleman, K.G. et al. Expression of engrailed proteins in arthropods, annelids, and chordates Cell, 58 (1989),pp. 955-968
    [59]
    Patton, E.E., Willems, A.R., Tyers, M. Combinatorial control in ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis Trends Genet., 14 (1998),pp. 236-243
    [60]
    Petroski, M.D., Deshaies, R.J. Function and regulation of cullin-RING ubiquitin ligases Nat. Rev. Mol. Cell Biol., 6 (2005),pp. 9-20
    [61]
    Ponting, C.P., Mott, R., Bork, P. et al. Genome Res., 11 (2001),pp. 1996-2008
    [62]
    Quiring, R., Walldorf, U., Kloter, U. et al. Science, 265 (1994),pp. 785-789
    [63]
    Raj, L., Vivekanand, P., Das, T.K. et al. Curr. Biol., 10 (2000),pp. 1265-1272
    [64]
    Redman, K.L., Rechsteiner, M. Extended reading frame of a ubiquitin gene encodes a stable, conserved, basic protein J. Biol. Chem., 263 (1988),pp. 4926-4931
    [65]
    Rogers, G.C., Rusan, N.M., Roberts, D.M. et al. The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication J. Cell Biol., 184 (2009),pp. 225-239
    [66]
    Roukens, M.G., Alloul-Ramdhani, M., Moghadasi, S. et al. Mol. Cell Biol., 28 (2008),pp. 4394-4406
    [67]
    Sandmann, T., Girardot, C., Brehme, M. et al. Genes Dev., 21 (2007),pp. 436-449
    [68]
    Schreader, B.A., Wang, Y., Nambu, J.R. Apoptosis, 8 (2003),pp. 129-139
    [69]
    Sheng, G., Thouvenot, E., Schmucker, D. et al. Genes Dev., 11 (1997),pp. 1122-1131
    [70]
    Silva, E., Au-Yeung, H.W., Van Goethem, E. et al. Immunity, 27 (2007),pp. 585-596
    [71]
    Skaar, J.R., D'Angiolella, V., Pagan, J.K. et al. SnapShot: F Box proteins II Cell, 137 (2009),p. 1358
    [72]
    Skaar, J.R., Pagan, J.K., Pagano, M. SnapShot: F box proteins I Cell, 137 (2009)
    [73]
    Spataro, V., Norbury, C., Harris, A.L. The ubiquitin–proteasome pathway in cancer Br. J. Cancer, 77 (1998),pp. 448-455
    [74]
    Stanyon, C.A., Liu, G., Mangiola, B.A. et al. Genome Biol., 5 (2004),p. R96
    [75]
    Stielow, B., Sapetschnig, A., Kruger, I. et al. CG2010 in SUMOylation – identification of SUMO-dependent chromatin-associated transcriptional repression components by a genome-wide RNAi screen Mol. Cell, 29 (2008),pp. 742-754
    [76]
    Stielow, B., Sapetschnig, A., Kruger, I. et al. Identification of SUMO-dependent chromatin-associated transcriptional repression components by a genome-wide RNAi screen Mol. Cell, 29 (2008),pp. 742-754
    [77]
    Umemori, M., Habara, O., Iwata, T. et al. Gene Regul. Syst. Bio., 3 (2009),pp. 11-20
    [78]
    Weiss, J.B., Suyama, K.L., Lee, H.H. et al. Cell, 107 (2001),pp. 387-398
    [79]
    Welchman, R.L., Gordon, C., Mayer, R.J. Ubiquitin and ubiquitin-like proteins as multifunctional signals Nat. Rev. Mol. Cell Biol., 6 (2005),pp. 599-609
    [80]
    Wing, J.P., Schreader, B.A., Yokokura, T. et al. Nat. Cell Biol., 4 (2002),pp. 451-456
    [81]
    Winston, J.T., Koepp, D.M., Zhu, C. et al. A family of mammalian F-box proteins Curr. Biol., 9 (1999),pp. 1180-1182
    [82]
    Wu, C., Daniels, R.W., DiAntonio, A. DFsn collaborates with highwire to down-regulate the Wallenda/DLK kinase and restrain synaptic terminal growth Neural Dev., 2 (2007),p. 16
    [83]
    Wu, J., Cohen, S.M. Repression of teashirt marks the initiation of wing development Development, 129 (2002),pp. 2411-2418
    [84]
    Xiao, W., Jang, J. Trends Plant Sci., 5 (2000),pp. 454-457
    [85]
    Yang, Z., Edenberg, H.J., Davis, R.L. Nucleic Acids Res., 33 (2005),p. e148
    [86]
    Zielke, N., Querings, S., Grosskortenhaus, R. et al. Molecular dissection of the APC/C inhibitor Rca1 shows a novel F-box-dependent function EMBO Rep., 7 (2006),pp. 1266-1272
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (90) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return