5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 6
Jun.  2012
Turn off MathJax
Article Contents

Targeted Genome Editing by Recombinant Adeno-Associated Virus (rAAV) Vectors for Generating Genetically Modified Pigs

doi: 10.1016/j.jgg.2012.05.004
More Information
  • Corresponding author: E-mail address: alun@hum-gen.au.dk (Yonglun Luo); E-mail address: bolundlars@gmail.com (Lars Bolund)
  • Received Date: 2012-05-08
  • Accepted Date: 2012-05-10
  • Available Online: 2012-05-17
  • Publish Date: 2012-06-20
  • Recombinant adeno-associated virus (rAAV) vectors have been extensively used for experimental gene therapy of inherited human diseases. Several advantages, such as simple vector construction, high targeting frequency by homologous recombination, and applicability to many cell types, make rAAV an attractive approach for targeted genome editing. Combined with cloning by somatic cell nuclear transfer (SCNT), this technology has recently been successfully adapted to generate gene-targeted pigs as models for cystic fibrosis, hereditary tyrosinemia type 1, and breast cancer. This review summarizes the development of rAAV for targeted genome editing in mammalian cells and provides strategies for enhancing the rAAV-mediated targeting frequency by homologous recombination. We discuss current development and application of the rAAV vectors for targeted genome editing in porcine primary fibroblasts, which are subsequently used as donor cells for SCNT to generate cloned genetically designed pigs and provide positive perspectives for the generation of gene-targeted pigs with rAAV in the future.
  • loading
  • [1]
    Aigner, B., Renner, S., Kessler, B. et al. Transgenic pigs as models for translational biomedical research J. Mol. Med., 88 (2010),pp. 653-664
    [2]
    Bode, G., Clausing, P., Gervais, F. et al. The utility of the minipig as an animal model in regulatory toxicology J. Pharmacol. Toxicol. Methods, 62 (2010),pp. 196-220
    [3]
    Bohenzky, R.A., LeFebvre, R.B., Berns, K.I. Sequence and symmetry requirements within the internal palindromic sequences of the adeno-associated virus terminal repeat Virology, 166 (1988),pp. 316-327
    [4]
    Brevini, T.A., Antonini, S., Pennarossa, G. et al. Recent progress in embryonic stem cell research and its application in domestic species Reprod. Domest. Anim., 43 (2008),pp. 193-199
    [5]
    Chen, F., Pruett-Miller, S.M., Huang, Y. et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases Nat. Methods, 8 (2011),pp. 753-755
    [6]
    Christian, M., Cermak, T., Doyle, E.L. et al. Targeting DNA double-strand breaks with TAL effector nucleases Genetics, 186 (2010),pp. 757-761
    [7]
    Du, Y., Kragh, P.M., Zhang, Y. et al. Piglets born from handmade cloning, an innovative cloning method without micromanipulation Theriogenology, 68 (2007),pp. 1104-1110
    [8]
    Ellis, B.L., Hirsch, M.L., Porter, S.N. et al. Zinc-finger nuclease-mediated gene correction using single AAV vector transduction and enhancement by food and drug administration-approved drugs Gene Ther (2012)
    [9]
    Fattah, F.J., Lichter, N.F., Fattah, K.R. et al. Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 8703-8708
    [10]
    Grompe, M., Al-Dhalimy, M., Finegold, M. et al. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice Genes Dev., 7 (1993),pp. 2298-2307
    [11]
    Guilbault, C., Saeed, Z., Downey, G.P. et al. Cystic fibrosis mouse models Am. J. Respir. Cell Mol. Biol., 36 (2007),pp. 1-7
    [12]
    Hauschild, J., Petersen, B., Santiago, Y. et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 12013-12017
    [13]
    Hickey, R.D., Lillegard, J.B., Fisher, J.E. et al. Efficient production of Fah-null heterozygote pigs by chimeric adeno-associated virus-mediated gene knockout and somatic cell nuclear transfer Hepatology, 54 (2011),pp. 1351-1359
    [14]
    Hirata, R., Chamberlain, J., Dong, R. et al. Targeted transgene insertion into human chromosomes by adeno-associated virus vectors Nat. Biotechnol., 20 (2002),pp. 735-738
    [15]
    Hirata, R.K., Russell, D.W. Design and packaging of adeno-associated virus gene targeting vectors J. Virol., 74 (2000),pp. 4612-4620
    [16]
    Inoue, N., Hirata, R.K., Russell, D.W. High-fidelity correction of mutations at multiple chromosomal positions by adeno-associated virus vectors J. Virol., 73 (1999),pp. 7376-7380
    [17]
    Keefer, C.L., Pant, D., Blomberg, L. et al. Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates Anim. Reprod. Sci., 98 (2007),pp. 147-168
    [18]
    Klymiuk, N., Mundhenk, L., Kraehe, K. et al. J. Mol. Med. (Berl), 90 (2011),pp. 597-608
    [19]
    Kohli, M., Rago, C., Lengauer, C. et al. Facile methods for generating human somatic cell gene knockouts using recombinant adeno-associated viruses Nucleic Acids Res., 32 (2004),p. e3
    [20]
    Kragh, P.M., Nielsen, A.L., Li, J. et al. Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer's disease-causing dominant mutation APPsw Transgenic Res., 18 (2009),pp. 545-558
    [21]
    Kuzmuk, K.N., Schook, L.B.
    [22]
    Lai, L., Prather, R.S. Production of cloned pigs by using somatic cells as donors Cloning Stem Cells, 5 (2003),pp. 233-241
    [23]
    Lai, L., Kolber-Simonds, D., Park, K.W. et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning Science, 295 (2002),pp. 1089-1092
    [24]
    Lindblad, B., Lindstedt, S., Steen, G. On the enzymic defects in hereditary tyrosinemia Proc. Natl. Acad. Sci. USA, 74 (1977),pp. 4641-4645
    [25]
    Linden, R.M., Ward, P., Giraud, C. et al. Site-specific integration by adeno-associated virus Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 11288-11294
    [26]
    Liu, X., Yan, Z., Luo, M. et al. Targeted correction of single-base-pair mutations with adeno-associated virus vectors under nonselective conditions J. Virol., 78 (2004),pp. 4165-4175
    [27]
    Luo, Y., Bolund, L., Sorensen, C.B. Transgenic Res., 21 (2011),pp. 671-676
    [28]
    Luo, Y., Li, J., Liu, Y. et al. Transgenic Res., 20 (2011),pp. 975-988
    [29]
    Luo, Y., Lin, L., Bolund, L. et al. Genetically modified pigs for biomedical research J. Inherit. Metab. Dis (2012)
    [30]
    Miller, D.G., Petek, L.M., Russell, D.W. Human gene targeting by adeno-associated virus vectors is enhanced by DNA double-strand breaks Mol. Cell Biol., 23 (2003),pp. 3550-3557
    [31]
    Miller, J.C., Tan, S., Qiao, G. et al. A TALE nuclease architecture for efficient genome editing Nat. Biotechnol., 29 (2011),pp. 143-148
    [32]
    Miyawaki, K., Yamada, Y., Yano, H. et al. Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice Proc. Natl. Acad. Sci. US A, 96 (1999),pp. 14843-14847
    [33]
    Muzyczka, N. Use of adeno-associated virus as a general transduction vector for mammalian cells Curr. Top. Microbiol. Immunol., 158 (1992),pp. 97-129
    [34]
    Nakai, H., Storm, T.A., Kay, M.A. Nat. Biotechnol., 18 (2000),pp. 527-532
    [35]
    Paiboonsukwong, K., Ohbayashi, F., Shiiba, H. et al. Correction of mutant Fanconi anemia gene by homologous recombination in human hematopoietic cells using adeno-associated virus vector J. Gene Med., 11 (2009),pp. 1012-1019
    [36]
    Paulk, N.K., Marquez Loza, L., Finegold, M. et al. Hum. Gene Ther (2012)
    [37]
    Pieroni, L., Fipaldini, C., Monciotti, A. et al. Targeted integration of adeno-associated virus-derived plasmids in transfected human cells Virology, 249 (1998),pp. 249-259
    [38]
    Porteus, M.H., Cathomen, T., Weitzman, M.D. et al. Efficient gene targeting mediated by adeno-associated virus and DNA double-strand breaks Mol. Cell Biol., 23 (2003),pp. 3558-3565
    [39]
    Prather, R.S., Hawley, R.J., Carter, D.B. et al. Transgenic swine for biomedicine and agriculture Theriogenology, 59 (2003),pp. 115-123
    [40]
    Renner, S., Fehlings, C., Herbach, N. et al. Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function Diabetes, 59 (2010),pp. 1228-1238
    [41]
    Riordan, J.R., Rommens, J.M., Kerem, B. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA Science, 245 (1989),pp. 1066-1073
    [42]
    Rogers, C.S., Hao, Y., Rokhlina, T. et al. Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer J. Clin. Invest., 118 (2008),pp. 1571-1577
    [43]
    Rogers, C.S., Stoltz, D.A., Meyerholz, D.K. et al. Science, 321 (2008),pp. 1837-1841
    [44]
    Russell, D.W., Hirata, R.K. Human gene targeting by viral vectors Nat. Genet., 18 (1998),pp. 325-330
    [45]
    Tichy, E.D., Pillai, R., Deng, L. et al. Mouse embryonic stem cells, but not somatic cells, predominantly use homologous recombination to repair double-strand DNA breaks Stem Cells Dev., 19 (2010),pp. 1699-1711
    [46]
    Trobridge, G., Hirata, R.K., Russell, D.W. Gene targeting by adeno-associated virus vectors is cell-cycle dependent Hum. Gene Ther, 16 (2005),pp. 522-526
    [47]
    Vajta, G. Handmade cloning: the future way of nuclear transfer? Trends Biotechnol, 25 (2007),pp. 250-253
    [48]
    Vajta, G., Callesen, H. Establishment of an efficient somatic cell nuclear transfer system for production of transgenic pigs Theriogenology, 77 (2012),pp. 1263-1274
    [49]
    Vasileva, A., Linden, R.M., Jessberger, R. Homologous recombination is required for AAV-mediated gene targeting Nucleic Acids Res., 34 (2006),pp. 3345-3360
    [50]
    Wernersson, R., Schierup, M.H., Jorgensen, F.G. et al. Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing BMC Genomics, 6 (2005),p. 70
    [51]
    Wood, A.J., Lo, T.W., Zeitler, B. et al. Targeted genome editing across species using ZFNs and TALENs Science, 333 (2011),p. 307
    [52]
    Wu, Z., Yang, H., Colosi, P. Effect of genome size on AAV vector packaging Mol. Ther., 18 (2010),pp. 80-86
    [53]
    Yang, J., Zhou, W., Zhang, Y. et al. Concatamerization of adeno-associated virus circular genomes occurs through intermolecular recombination J. Virol., 73 (1999),pp. 9468-9477
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (100) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return