[1] |
Allen, E., Xie, Z., Gustafson, A.M. et al. microRNA-directed phasing during trans-acting siRNA biogenesis in plants Cell, 121 (2005),pp. 207-221
|
[2] |
Ambros, V., Bartel, B., Bartel, D.P. et al. A uniform system for microRNA annotation RNA, 9 (2003),pp. 277-279
|
[3] |
Aukerman, M.J., Sakai, H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes Plant Cell, 15 (2003),pp. 2730-2741
|
[4] |
Bartel, D. MicroRNAs: genomics, biogenesis, mechanism, and function Cell, 116 (2004),pp. 281-297
|
[5] |
Baulcombe, D. RNA silencing in plants Nature, 431 (2004),pp. 356-363
|
[6] |
Blanc, G., Wolfe, K.H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes Plant Cell, 16 (2004),pp. 1667-1678
|
[7] |
Bowers, J.E., Chapman, B.A., Rong, J. et al. Unraveling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events Nature, 422 (2003),pp. 433-438
|
[8] |
Chapman, E.J., Carrington, J.C. Specialization and evolution of endogenous small RNA pathways Nat. Rev. Genet., 8 (2007),pp. 884-896
|
[9] |
Chen, X. Science, 303 (2004),pp. 2022-2025
|
[10] |
Chen, Z.J., Scheffler, B.E., Dennis, E. et al. Plant Physiol., 145 (2007),pp. 1303-1310
|
[11] |
Chuck, G., Cigan, A.M., Saeteurn, K. et al. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA Nat. Genet., 39 (2007),pp. 544-549
|
[12] |
Elemento, O., Gascuel, O., Lefranc, M.P. Reconstructing the duplication history of tandemly repeated genes Mol. Biol. Evol., 19 (2002),pp. 278-288
|
[13] |
Fawcett, J.A., Maere, S., Van de Peer, Y. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 5737-5742
|
[14] |
Griffiths-Jones, S., Saini, H.K., van Dongen, S. et al. miRBase: tools for microRNA genomics Nucleic Acids Res., 36 (2008),pp. D154-D158
|
[15] |
Hendrix, B., Stewart, J.M. Ann. Bot., 95 (2005),pp. 789-797
|
[16] |
Ji, S.-J., Lu, Y.-C., Feng, J.-X. et al. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array Nucleic Acids Res., 31 (2003),pp. 2534-2543
|
[17] |
Jones-Rhoades, M.W., Bartel, D.P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA Mol. Cell, 14 (2004),pp. 787-799
|
[18] |
Kang, B.-H., Busse, J.S., Bednarek, S.Y. Plant Cell, 15 (2003),pp. 899-913
|
[19] |
Kim, H.J., Triplett, B.A. Plant Physiol., 127 (2001),pp. 1361-1366
|
[20] |
Kurihara, Y., Watanabe, Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 12753-12758
|
[21] |
Kwak, P.B., Wang, Q.-Q., Chen, X.-S. et al. Enrichment of a set of microRNAs during the cotton fiber development BMC Genomics, 10 (2009),p. 457
|
[22] |
Lewis, B.P., Shih, I.-h., Jones-Rhoades, M.W. et al. Prediction of mammalian microRNA targets Cell, 115 (2003),pp. 787-798
|
[23] |
Li, Y., Liu, X., Huang, L. et al. Potential coexistence of both bacterial and eukaryotic small RNA biogenesis and functional related protein homologs in Archaea J. Genet. Genomics, 37 (2010),pp. 493-503
|
[24] |
Llave, C., Xie, Z., Kasschau, K.D. et al. Science, 297 (2002),pp. 2053-2056
|
[25] |
Lu, C. Elucidation of the small RNA component of the transcriptome Science, 309 (2005),pp. 1567-1569
|
[26] |
Mei, W.-Q., Qin, Y.-M., Song, W.-Q. et al. J. Genet. Genomics, 36 (2009),pp. 141-150
|
[27] |
Meyers, B.C., Axtell, M.J., Bartel, B. et al. Criteria for annotation of plant microRNAs Plant Cell, 20 (2008),pp. 3186-3190
|
[28] |
Mi, S., Cai, T., Hu, Y. et al. Cell, 133 (2008),pp. 116-127
|
[29] |
Miao, W., Wang, X., Song, C. et al. J. Exp. Bot., 61 (2010),pp. 4263-4275
|
[30] |
Pang, C.-Y., Wang, H., Pang, Y. et al. Mol. Cell. Proteomics, 9 (2010),pp. 2019-2033
|
[31] |
Pang, M., Woodward, A.W., Agarwal, V. et al. Genome Biol., 10 (2009),p. R122
|
[32] |
Pasapula, V., Shen, G., Kuppu, S. et al. Plant Biotechnol. J., 9 (2011),pp. 88-99
|
[33] |
Paterson, A.H., Bowers, J.E., Chapman, B.A. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 9903-9908
|
[34] |
Qin, Y.-M., Zhu, Y.-X. How cotton fibers elongate: a tale of linear cell-growth mode Curr. Opin. Plant Biol., 14 (2011),pp. 106-111
|
[35] |
Qin, Y.-M., Hu, C.-Y., Pang, Y. et al. Plant Cell, 19 (2007),pp. 3692-3704
|
[36] |
Qiu, C.-X., Xie, F.-L., Zhu, Y.-Y. et al. Gene, 395 (2007),pp. 49-61
|
[37] |
Rajagopalan, R., Vaucheret, H., Trejo, J. et al. Genes Dev., 20 (2006),pp. 3407-3425
|
[38] |
Saeed, A.I., Bhagabati, N.K., Braisted, J.C. et al. TM4 microarray software suite Methods Enzymol., 411 (2006),pp. 134-193
|
[39] |
Senchina, D.S., Alvarez, I., Cronn, R.C. et al. Mol. Biol. Evol., 20 (2003),pp. 633-643
|
[40] |
Shi, Y.-H., Zhu, S.-W., Mao, X.-Z. et al. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation Plant Cell, 18 (2006),pp. 651-664
|
[41] |
Wang, Y., Itaya, A., Zhong, X. et al. Plant Cell, 23 (2011),pp. 3185-3203
|
[42] |
Wang, Z.-M., Xue, W., Dong, C.-J. et al. A comparative miRNAome analysis reveals seven fiber initiation-related and 36 novel miRNAs in developing cotton ovules Mol. Plant (2011)
|
[43] |
Wendel, J., Albert, V. System. Bot., 17 (1992),pp. 115-143
|
[44] |
Wu, Z., Soliman, K.M., Bolton, J.J. et al. Identification of differentially expressed genes associated with cotton fiber development in a chromosomal substitution line (CS-B22sh) Funct. Integr. Genomics, 8 (2008),pp. 165-174
|
[45] |
Zhang, B., Wang, Q., Wang, K. et al. Identification of cotton microRNAs and their targets Gene, 397 (2007),pp. 26-37
|