5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 6
Jun.  2012
Turn off MathJax
Article Contents

Pluripotent Stem Cells Models for Huntington's Disease: Prospects and Challenges

doi: 10.1016/j.jgg.2012.04.006
More Information
  • Corresponding author: E-mail address: awchan@emory.edu (Anthony W.S. Chan)
  • Received Date: 2012-03-20
  • Accepted Date: 2012-04-25
  • Rev Recd Date: 2012-04-23
  • Available Online: 2012-05-09
  • Publish Date: 2012-06-20
  • Pluripotent cellular models have shown great promise in the study of a number of neurological disorders. Several advantages of using a stem cell model include the potential for cells to derive disease relevant neuronal cell types, providing a system for researchers to monitor disease progression during neurogenesis, along with serving as a platform for drug discovery. A number of stem cell derived models have been employed to establish in vitro research models of Huntington's disease that can be used to investigate cellular pathology and screen for drug and cell-based therapies. Although some progress has been made, there are a number of challenges and limitations that must be overcome before the true potential of this research strategy is achieved. In this article we review current stem cell models that have been reported, as well as discuss the issues that impair these studies. We also highlight the prospective application of Huntington's disease stem cell models in the development of novel therapeutic strategies and advancement of personalized medicine.
  • loading
  • [1]
    Bachoud-Levi, A.C., Gaura, V., Brugieres, P. et al. Effect of fetal neural transplants in patients with Huntington's disease 6 years after surgery: a long-term follow-up study Lancet Neurol., 5 (2006),pp. 303-309
    [2]
    Bilsen, P.H.J.v., Jaspers, L., Lombardi, M.S. et al. Identification and allele-specific silencing of the mutant huntingtin allele in Huntington's disease patient-derived fibroblasts Hum. Gene Ther., 19 (2008),pp. 710-718
    [3]
    Boudreau, R.L., McBride, J.L., Martins, I. et al. Nonallele-specific silencing of mutant and wild-type Huntingtin demonstrates therapeutic efficacy in Huntington's disease mice Mol. Ther., 17 (2009),pp. 1053-1063
    [4]
    Bradley, C.K., Scott, H.A., Chami, O. et al. Derivation of Huntington's disease-affected human embryonic stem cell lines Stem Cells Dev., 20 (2011),pp. 495-502
    [5]
    Camnasio, S., Carri, A.D., Lombardo, A. et al. The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington's disease patients demonstrates mutation related enhanced lysosomal activity Neurob. Dis., 46 (2012),pp. 41-51
    [6]
    Castiglioni, V., Onorati, M., Rochon, C. et al. Induced pluripotent stem cell lines from Huntington's disease mice undergo neuronal differentiation while showing alterations in the lysosomal pathway Neurobiol. Dis., 46 (2012),pp. 30-40
    [7]
    Chan, A.W. Transgenic primate research paves the path to a better animal model: are we a step closer to curing inherited human genetic disorders? J. Mol. Cell. Biol., 1 (2009),pp. 13-14
    [8]
    Chan, A.W.S., Cheng, P.-H., Neumann, A. et al. Reprogramming Huntington monkey skin cells into pluripotent stem cells Cell. Reprogram., 12 (2010),pp. 509-517
    [9]
    Cicchetti, F., Saporta, S., Hauser, R.A. et al. Neural transplants in patients with Huntington's disease undergo disease-like neuronal degeneration Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 12483-12488
    [10]
    Conti, L., Cattaneo, E. Nat. Rev. Neurosci., 11 (2010),pp. 176-187
    [11]
    Crook, Z.R., Housman, D. Huntington's disease: can mice lead the way to treatment? Neuron, 69 (2011),pp. 423-435
    [12]
    Davies, S., Ramsden, D.B. Huntington's disease Mol. Pathol., 54 (2001),pp. 409-413
    [13]
    Deng, Y.P., Albin, R.L., Penney, J.B. et al. Differential loss of striatal projection systems in Huntington's disease: a quantitative immunohistochemical study J. Chem. Neuroanat., 27 (2004),pp. 143-164
    [14]
    Dhara, S.K., Hasneen, K., Machacek, D.W. et al. Human neural progenitor cells derived from embryonic stem cells in feeder-free cultures Differentiation, 76 (2008),pp. 454-464
    [15]
    DiFiglia, M. Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain Science, 277 (1997),pp. 1990-1993
    [16]
    Dimos, J.T., Rodolfa, K.T., Niakan, K.K. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons Science, 321 (2008),pp. 1218-1221
    [17]
    Dong, G., Ferguson, J.M., Duling, A.J. et al. Modeling pathogenesis of Huntington's disease with inducible neuroprogenitor cells Cell. Mol. Neurobiol., 31 (2011),pp. 737-747
    [18]
    Drouet, V., Perrin, V., Hassig, R. et al. Sustained effects of nonallele-specific Huntingtin silencing Ann. Neurol., 65 (2009),pp. 276-285
    [19]
    Erceg, S., Ronaghi, M., Stojković, M. Human embryonic stem cell differentiation toward regional specific neural precursors Stem Cells, 27 (2009),pp. 78-87
    [20]
    Faber, P.W., Alter, J.R., MacDonald, M.E. et al. Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 179-184
    [21]
    Fecke, W., Gianfriddo, M., Gaviraghi, G. et al. Small molecule drug discovery for Huntington's disease Drug Discov. Today, 14 (2009),pp. 453-464
    [22]
    Gerrard, L., Rodgers, L., Cui, W. Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling Stem Cells, 23 (2005),pp. 1234-1241
    [23]
    Gil, J.,M., Rego, A.C. Mechanisms of neurodegeneration in Huntington's disease Eur. J. Neurosci., 27 (2008),pp. 2803-2820
    [24]
    Gray, M., Shirasaki, D.I., Cepeda, C. et al. Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice J. Neurosci., 28 (2008),pp. 6182-6195
    [25]
    Grskovic, M., Javaherian, A., Strulovici, B. et al. Induced pluripotent stem cells — opportunities for disease modelling and drug discovery Nat. Rev. Drug Discov., 10 (2011),pp. 915-929
    [26]
    Gunawardena, S., Her, L.S., Brusch, R.G. et al. Neuron, 40 (2003),pp. 25-40
    [27]
    Gusella, J.F., MacDonald, M.E. Huntington's disease: seeing the pathogenic process through a genetic lens Trends Biochem. Sci., 31 (2006),pp. 533-540
    [28]
    Harper, S.Q. From the Cover: RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 5820-5825
    [29]
    Hedreen, J.C., Folstein, S.E. Early loss of neostriatal striosome neurons in Huntington's disease J. Neuropathol. Exp. Neurol., 54 (1995),pp. 105-120
    [30]
    Huang, A.H.-C., Snyder, B.R., Cheng, P.-H. et al. Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice Stem Cells, 26 (2008),pp. 2654-2663
    [31]
    Imarisio, S., Carmichael, J., Korolchuk, V. et al. Huntington's disease: from pathology and genetics to potential therapies Biochem. J., 412 (2008),p. 191
    [32]
    Inoue, H., Yamanaka, S. The use of induced pluripotent stem cells in drug development Clin. Pharmacol. Ther., 89 (2011),pp. 655-661
    [33]
    Jacobsen, J.C., Bawden, C.S., Rudiger, S.R. et al. An ovine transgenic Huntington's disease model Hum. Mol. Genet., 19 (2010),pp. 1873-1882
    [34]
    Johansen, K.K., Wang, L., Aasly, J.O. et al. Metabolomic profiling in LRRK2-related Parkinson's disease PLoS ONE, 4 (2009),p. e7551
    [35]
    Johnson, C.D., Davidson, B.L. Huntington's disease: progress toward effective disease-modifying treatments and a cure Hum. Mol. Genet., 19 (2010),pp. R98-R102
    [36]
    Jung, Y.W., Hysolli, E., Kim, K.-Y. et al. Human induced pluripotent stem cells and neurodegenerative disease Curr. Opin. Neurol., 25 (2012),pp. 125-130
    [37]
    Juopperi, T.A., Song, H., Ming, G.L. Modeling neurological diseases using patient-derived induced pluripotent stem cells Future Neurol., 6 (2011),pp. 363-373
    [38]
    Kim, M., Lee, S.-T., Chu, K. et al. Stem cell-based cell therapy for Huntington disease: a review Neuropathology, 28 (2008),pp. 1-9
    [39]
    Koch, P., Opitz, T., Steinbeck, J.A. et al. Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 3225-3230
    [40]
    Krystkowiak, P., Gaura, V., Labalette, M. et al. Alloimmunisation to donor antigens and immune rejection following foetal neural grafts to the brain in patients with Huntington's disease PLoS ONE, 2 (2007),p. e166
    [41]
    Laforet, G.A., Sapp, E., Chase, K. et al. Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington's disease J. Neurosci., 21 (2001),pp. 9112-9123
    [42]
    Laowtammathron, C., Cheng, E.C.H., Cheng, P.-H. et al. Monkey hybrid stem cells develop cellular features of Huntington's disease BMC Cell Biol., 11 (2010),p. 12
    [43]
    Lee, S.T., Chu, K., Jung, K.H. et al. Slowed progression in models of Huntington disease by adipose stem cell transplantation Ann. Neurol., 66 (2009),pp. 671-681
    [44]
    Li, S., Li, X.J. Multiple pathways contribute to the pathogenesis of Huntington disease Mol. Neurodegener., 1 (2006),p. 19
    [45]
    Li, T., Zheng, J., Xie, Y. et al. Transplantable neural progenitor populations derived from rhesus monkey embryonic stem cells Stem Cells, 23 (2005),pp. 1295-1303
    [46]
    Lunn, J.S., Sakowski, S.A., Hur, J. et al. Stem cell technology for neurodegenerative diseases Ann. Neurol., 70 (2011),pp. 353-361
    [47]
    Ma, L., Hu, B., Liu, Y. et al. Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice Cell Stem Cell, 10 (2012),pp. 455-464
    [48]
    MacDonald, M.E., Ambrose, C.M., Duyao, M.P. et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes Cell, 72 (1993),pp. 971-983
    [49]
    Mangiarini, L., Sathasivam, K., Seller, M. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice Cell, 87 (1996),pp. 493-506
    [50]
    Marchetto, M.C., Brennand, K.J., Boyer, L.F. et al. Induced pluripotent stem cells (iPSCs) and neurological disease modeling: progress and promises Hum. Mol. Genet., 20 (2011),pp. R109-R115
    [51]
    Marchetto, M.C.N., Carromeu, C., Acab, A. et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells Cell, 143 (2010),pp. 527-539
    [52]
    Marchetto, M.C.N., Winner, B., Gage, F.H. Pluripotent stem cells in neurodegenerative and neurodevelopmental diseases Hum. Mol. Genet., 19 (2010),pp. R71-R76
    [53]
    Mateizel, I. Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders Hum. Reprod., 21 (2005),pp. 503-511
    [54]
    McBride, J.L., Pitzer, M.R., Boudreau, R.L. et al. Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington's disease Mol. Ther., 19 (2011),pp. 2152-2162
    [55]
    Menalled, L., El-Khodor, B.F., Patry, M. et al. Systematic behavioral evaluation of Huntington's disease transgenic and knock-in mouse models Neurobiol. Dis., 35 (2009),pp. 319-336
    [56]
    Mestre, T.A., Ferreira, J.J. An evidence-based approach in the treatment of Huntington’s disease Parkinsonism Relat. Disord., 4 (2012),pp. 316-320
    [57]
    Miller, V.M. J. Neurosci., 25 (2005),pp. 9152-9161
    [58]
    Morse, R.J., Leeds, J.M., Macdonald, D. et al.
    [59]
    Niclis, J.C., Trounson, A.O., Dottori, M. et al. Human embryonic stem cell models of Huntington disease Reprod. Biomed. Online, 19 (2009),pp. 106-113
    [60]
    Park, I.-H., Arora, N., Huo, H. et al. Disease-specific induced pluripotent stem cells Cell, 134 (2008),pp. 877-886
    [61]
    Pruszak, J., Sonntag, K.C., Aung, M.H. et al. Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations Stem Cells, 25 (2007),pp. 2257-2268
    [62]
    Reuter, I., Tai, Y.F., Pavese, N. et al. Long-term clinical and positron emission tomography outcome of fetal striatal transplantation in Huntington's disease J. Neurol. Neurosurg. Psychiatry, 79 (2008),pp. 948-951
    [63]
    Ross, C.A., Shoulson, I. Huntington disease: pathogenesis, biomarkers, and approaches to experimental therapeutics Parkinsonism. Relat. Disord., 3 (2009),pp. S135-138
    [64]
    Saha, K., Jaenisch, R. Technical challenges in using human induced pluripotent stem cells to model disease Cell Stem Cell, 5 (2009),pp. 584-595
    [65]
    Sapp, E., Schwarz, C., Chase, K. et al. Huntingtin localization in brains of normal and Huntington's disease patients Ann. Neurol., 42 (1997),pp. 604-612
    [66]
    Sassone, J., Colciago, C., Cislaghi, G. et al. Huntington's disease: the current state of research with peripheral tissues Exp. Neurol., 219 (2009),pp. 385-397
    [67]
    Snyder, B.R., Cheng, P.-H., Yang, J. et al. Characterization of dental pulp stem/stromal cells of Huntington monkey tooth germs BMC Cell Biol., 12 (2011),p. 39
    [68]
    Snyder, B.R., Chiu, A.M., Prockop, D.J. et al. Human multipotent stromal cells (MSCs) increase neurogenesis and decrease atrophy of the striatum in a transgenic mouse model for Huntington's disease PLoS ONE, 5 (2010),p. e9347
    [69]
    Tiscornia, G., Vivas, E.L., Belmonte, J.C.I. Diseases in a dish: modeling human genetic disorders using induced pluripotent cells Nat. Med. (2011),pp. 1570-1576
    [70]
    Verlinsky, Y., Strelchenko, N., Kukharenko, V. et al. Human embryonic stem cell lines with genetic disorders Reprod. Biomed. Online, 10 (2005),pp. 105-110
    [71]
    von Horsten, S., Schmitt, I., Nguyen, H.P. et al. Transgenic rat model of Huntington's disease Hum. Mol. Genet., 12 (2003),pp. 617-624
    [72]
    William Yang, X., Gray, M.
    [73]
    Winner, B., Kohl, Z., Gage, F.H. Neurodegenerative disease and adult neurogenesis Eur. J. Neurosci., 33 (2011),pp. 1139-1151
    [74]
    Wu, C.-L., Hwang, C.-S., Chen, S.-D. et al. Neuroprotective mechanisms of brain-derived neurotrophic factor against 3-nitropropionic acid toxicity: therapeutic implications for Huntington's disease Ann. NY Acad. Sci., 1201 (2010),pp. 8-12
    [75]
    Yang, D., Wang, C.E., Zhao, B. et al. Expression of Huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs Hum. Mol. Genet., 19 (2010),pp. 3983-3994
    [76]
    Yang, S.-H., Cheng, P.-H., Banta, H. et al. Towards a transgenic model of Huntington's disease in a non-human primate Nature, 453 (2008),pp. 921-924
    [77]
    Yuan, S.H., Martin, J., Elia, J. et al. Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells PLoS ONE, 6 (2011),p. e17540
    [78]
    Zhang, N., An, M.C., Montoro, D. et al. Characterization of human Huntington's disease cell model from induced pluripotent stem cells PLoS Curr., 2 (2010),p. RRN1193
    [79]
    Zhang, Y., Friedlander, R.M. Using non-coding small RNAs to develop therapies for Huntington's disease Gene Ther., 18 (2011),pp. 1139-1149
    [80]
    Zuccato, C., Cattaneo, E. Brain-derived neurotrophic factor in neurodegenerative diseases Nat. Rev. Neurol., 5 (2009),pp. 311-322
    [81]
    Zuccato, C., Valenza, M., Cattaneo, E. Molecular mechanisms and potential therapeutical targets in Huntington's disease Physiol. Rev., 90 (2010),pp. 905-981
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (78) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return