[1] |
Bachoud-Levi, A.C., Gaura, V., Brugieres, P. et al. Effect of fetal neural transplants in patients with Huntington's disease 6 years after surgery: a long-term follow-up study Lancet Neurol., 5 (2006),pp. 303-309
|
[2] |
Bilsen, P.H.J.v., Jaspers, L., Lombardi, M.S. et al. Identification and allele-specific silencing of the mutant huntingtin allele in Huntington's disease patient-derived fibroblasts Hum. Gene Ther., 19 (2008),pp. 710-718
|
[3] |
Boudreau, R.L., McBride, J.L., Martins, I. et al. Nonallele-specific silencing of mutant and wild-type Huntingtin demonstrates therapeutic efficacy in Huntington's disease mice Mol. Ther., 17 (2009),pp. 1053-1063
|
[4] |
Bradley, C.K., Scott, H.A., Chami, O. et al. Derivation of Huntington's disease-affected human embryonic stem cell lines Stem Cells Dev., 20 (2011),pp. 495-502
|
[5] |
Camnasio, S., Carri, A.D., Lombardo, A. et al. The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington's disease patients demonstrates mutation related enhanced lysosomal activity Neurob. Dis., 46 (2012),pp. 41-51
|
[6] |
Castiglioni, V., Onorati, M., Rochon, C. et al. Induced pluripotent stem cell lines from Huntington's disease mice undergo neuronal differentiation while showing alterations in the lysosomal pathway Neurobiol. Dis., 46 (2012),pp. 30-40
|
[7] |
Chan, A.W. Transgenic primate research paves the path to a better animal model: are we a step closer to curing inherited human genetic disorders? J. Mol. Cell. Biol., 1 (2009),pp. 13-14
|
[8] |
Chan, A.W.S., Cheng, P.-H., Neumann, A. et al. Reprogramming Huntington monkey skin cells into pluripotent stem cells Cell. Reprogram., 12 (2010),pp. 509-517
|
[9] |
Cicchetti, F., Saporta, S., Hauser, R.A. et al. Neural transplants in patients with Huntington's disease undergo disease-like neuronal degeneration Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 12483-12488
|
[10] |
Conti, L., Cattaneo, E. Nat. Rev. Neurosci., 11 (2010),pp. 176-187
|
[11] |
Crook, Z.R., Housman, D. Huntington's disease: can mice lead the way to treatment? Neuron, 69 (2011),pp. 423-435
|
[12] |
Davies, S., Ramsden, D.B. Huntington's disease Mol. Pathol., 54 (2001),pp. 409-413
|
[13] |
Deng, Y.P., Albin, R.L., Penney, J.B. et al. Differential loss of striatal projection systems in Huntington's disease: a quantitative immunohistochemical study J. Chem. Neuroanat., 27 (2004),pp. 143-164
|
[14] |
Dhara, S.K., Hasneen, K., Machacek, D.W. et al. Human neural progenitor cells derived from embryonic stem cells in feeder-free cultures Differentiation, 76 (2008),pp. 454-464
|
[15] |
DiFiglia, M. Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain Science, 277 (1997),pp. 1990-1993
|
[16] |
Dimos, J.T., Rodolfa, K.T., Niakan, K.K. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons Science, 321 (2008),pp. 1218-1221
|
[17] |
Dong, G., Ferguson, J.M., Duling, A.J. et al. Modeling pathogenesis of Huntington's disease with inducible neuroprogenitor cells Cell. Mol. Neurobiol., 31 (2011),pp. 737-747
|
[18] |
Drouet, V., Perrin, V., Hassig, R. et al. Sustained effects of nonallele-specific Huntingtin silencing Ann. Neurol., 65 (2009),pp. 276-285
|
[19] |
Erceg, S., Ronaghi, M., Stojković, M. Human embryonic stem cell differentiation toward regional specific neural precursors Stem Cells, 27 (2009),pp. 78-87
|
[20] |
Faber, P.W., Alter, J.R., MacDonald, M.E. et al. Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 179-184
|
[21] |
Fecke, W., Gianfriddo, M., Gaviraghi, G. et al. Small molecule drug discovery for Huntington's disease Drug Discov. Today, 14 (2009),pp. 453-464
|
[22] |
Gerrard, L., Rodgers, L., Cui, W. Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling Stem Cells, 23 (2005),pp. 1234-1241
|
[23] |
Gil, J.,M., Rego, A.C. Mechanisms of neurodegeneration in Huntington's disease Eur. J. Neurosci., 27 (2008),pp. 2803-2820
|
[24] |
Gray, M., Shirasaki, D.I., Cepeda, C. et al. Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice J. Neurosci., 28 (2008),pp. 6182-6195
|
[25] |
Grskovic, M., Javaherian, A., Strulovici, B. et al. Induced pluripotent stem cells — opportunities for disease modelling and drug discovery Nat. Rev. Drug Discov., 10 (2011),pp. 915-929
|
[26] |
Gunawardena, S., Her, L.S., Brusch, R.G. et al. Neuron, 40 (2003),pp. 25-40
|
[27] |
Gusella, J.F., MacDonald, M.E. Huntington's disease: seeing the pathogenic process through a genetic lens Trends Biochem. Sci., 31 (2006),pp. 533-540
|
[28] |
Harper, S.Q. From the Cover: RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 5820-5825
|
[29] |
Hedreen, J.C., Folstein, S.E. Early loss of neostriatal striosome neurons in Huntington's disease J. Neuropathol. Exp. Neurol., 54 (1995),pp. 105-120
|
[30] |
Huang, A.H.-C., Snyder, B.R., Cheng, P.-H. et al. Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice Stem Cells, 26 (2008),pp. 2654-2663
|
[31] |
Imarisio, S., Carmichael, J., Korolchuk, V. et al. Huntington's disease: from pathology and genetics to potential therapies Biochem. J., 412 (2008),p. 191
|
[32] |
Inoue, H., Yamanaka, S. The use of induced pluripotent stem cells in drug development Clin. Pharmacol. Ther., 89 (2011),pp. 655-661
|
[33] |
Jacobsen, J.C., Bawden, C.S., Rudiger, S.R. et al. An ovine transgenic Huntington's disease model Hum. Mol. Genet., 19 (2010),pp. 1873-1882
|
[34] |
Johansen, K.K., Wang, L., Aasly, J.O. et al. Metabolomic profiling in LRRK2-related Parkinson's disease PLoS ONE, 4 (2009),p. e7551
|
[35] |
Johnson, C.D., Davidson, B.L. Huntington's disease: progress toward effective disease-modifying treatments and a cure Hum. Mol. Genet., 19 (2010),pp. R98-R102
|
[36] |
Jung, Y.W., Hysolli, E., Kim, K.-Y. et al. Human induced pluripotent stem cells and neurodegenerative disease Curr. Opin. Neurol., 25 (2012),pp. 125-130
|
[37] |
Juopperi, T.A., Song, H., Ming, G.L. Modeling neurological diseases using patient-derived induced pluripotent stem cells Future Neurol., 6 (2011),pp. 363-373
|
[38] |
Kim, M., Lee, S.-T., Chu, K. et al. Stem cell-based cell therapy for Huntington disease: a review Neuropathology, 28 (2008),pp. 1-9
|
[39] |
Koch, P., Opitz, T., Steinbeck, J.A. et al. Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 3225-3230
|
[40] |
Krystkowiak, P., Gaura, V., Labalette, M. et al. Alloimmunisation to donor antigens and immune rejection following foetal neural grafts to the brain in patients with Huntington's disease PLoS ONE, 2 (2007),p. e166
|
[41] |
Laforet, G.A., Sapp, E., Chase, K. et al. Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington's disease J. Neurosci., 21 (2001),pp. 9112-9123
|
[42] |
Laowtammathron, C., Cheng, E.C.H., Cheng, P.-H. et al. Monkey hybrid stem cells develop cellular features of Huntington's disease BMC Cell Biol., 11 (2010),p. 12
|
[43] |
Lee, S.T., Chu, K., Jung, K.H. et al. Slowed progression in models of Huntington disease by adipose stem cell transplantation Ann. Neurol., 66 (2009),pp. 671-681
|
[44] |
Li, S., Li, X.J. Multiple pathways contribute to the pathogenesis of Huntington disease Mol. Neurodegener., 1 (2006),p. 19
|
[45] |
Li, T., Zheng, J., Xie, Y. et al. Transplantable neural progenitor populations derived from rhesus monkey embryonic stem cells Stem Cells, 23 (2005),pp. 1295-1303
|
[46] |
Lunn, J.S., Sakowski, S.A., Hur, J. et al. Stem cell technology for neurodegenerative diseases Ann. Neurol., 70 (2011),pp. 353-361
|
[47] |
Ma, L., Hu, B., Liu, Y. et al. Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice Cell Stem Cell, 10 (2012),pp. 455-464
|
[48] |
MacDonald, M.E., Ambrose, C.M., Duyao, M.P. et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes Cell, 72 (1993),pp. 971-983
|
[49] |
Mangiarini, L., Sathasivam, K., Seller, M. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice Cell, 87 (1996),pp. 493-506
|
[50] |
Marchetto, M.C., Brennand, K.J., Boyer, L.F. et al. Induced pluripotent stem cells (iPSCs) and neurological disease modeling: progress and promises Hum. Mol. Genet., 20 (2011),pp. R109-R115
|
[51] |
Marchetto, M.C.N., Carromeu, C., Acab, A. et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells Cell, 143 (2010),pp. 527-539
|
[52] |
Marchetto, M.C.N., Winner, B., Gage, F.H. Pluripotent stem cells in neurodegenerative and neurodevelopmental diseases Hum. Mol. Genet., 19 (2010),pp. R71-R76
|
[53] |
Mateizel, I. Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders Hum. Reprod., 21 (2005),pp. 503-511
|
[54] |
McBride, J.L., Pitzer, M.R., Boudreau, R.L. et al. Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington's disease Mol. Ther., 19 (2011),pp. 2152-2162
|
[55] |
Menalled, L., El-Khodor, B.F., Patry, M. et al. Systematic behavioral evaluation of Huntington's disease transgenic and knock-in mouse models Neurobiol. Dis., 35 (2009),pp. 319-336
|
[56] |
Mestre, T.A., Ferreira, J.J. An evidence-based approach in the treatment of Huntington’s disease Parkinsonism Relat. Disord., 4 (2012),pp. 316-320
|
[57] |
Miller, V.M. J. Neurosci., 25 (2005),pp. 9152-9161
|
[58] |
Morse, R.J., Leeds, J.M., Macdonald, D. et al.
|
[59] |
Niclis, J.C., Trounson, A.O., Dottori, M. et al. Human embryonic stem cell models of Huntington disease Reprod. Biomed. Online, 19 (2009),pp. 106-113
|
[60] |
Park, I.-H., Arora, N., Huo, H. et al. Disease-specific induced pluripotent stem cells Cell, 134 (2008),pp. 877-886
|
[61] |
Pruszak, J., Sonntag, K.C., Aung, M.H. et al. Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations Stem Cells, 25 (2007),pp. 2257-2268
|
[62] |
Reuter, I., Tai, Y.F., Pavese, N. et al. Long-term clinical and positron emission tomography outcome of fetal striatal transplantation in Huntington's disease J. Neurol. Neurosurg. Psychiatry, 79 (2008),pp. 948-951
|
[63] |
Ross, C.A., Shoulson, I. Huntington disease: pathogenesis, biomarkers, and approaches to experimental therapeutics Parkinsonism. Relat. Disord., 3 (2009),pp. S135-138
|
[64] |
Saha, K., Jaenisch, R. Technical challenges in using human induced pluripotent stem cells to model disease Cell Stem Cell, 5 (2009),pp. 584-595
|
[65] |
Sapp, E., Schwarz, C., Chase, K. et al. Huntingtin localization in brains of normal and Huntington's disease patients Ann. Neurol., 42 (1997),pp. 604-612
|
[66] |
Sassone, J., Colciago, C., Cislaghi, G. et al. Huntington's disease: the current state of research with peripheral tissues Exp. Neurol., 219 (2009),pp. 385-397
|
[67] |
Snyder, B.R., Cheng, P.-H., Yang, J. et al. Characterization of dental pulp stem/stromal cells of Huntington monkey tooth germs BMC Cell Biol., 12 (2011),p. 39
|
[68] |
Snyder, B.R., Chiu, A.M., Prockop, D.J. et al. Human multipotent stromal cells (MSCs) increase neurogenesis and decrease atrophy of the striatum in a transgenic mouse model for Huntington's disease PLoS ONE, 5 (2010),p. e9347
|
[69] |
Tiscornia, G., Vivas, E.L., Belmonte, J.C.I. Diseases in a dish: modeling human genetic disorders using induced pluripotent cells Nat. Med. (2011),pp. 1570-1576
|
[70] |
Verlinsky, Y., Strelchenko, N., Kukharenko, V. et al. Human embryonic stem cell lines with genetic disorders Reprod. Biomed. Online, 10 (2005),pp. 105-110
|
[71] |
von Horsten, S., Schmitt, I., Nguyen, H.P. et al. Transgenic rat model of Huntington's disease Hum. Mol. Genet., 12 (2003),pp. 617-624
|
[72] |
William Yang, X., Gray, M.
|
[73] |
Winner, B., Kohl, Z., Gage, F.H. Neurodegenerative disease and adult neurogenesis Eur. J. Neurosci., 33 (2011),pp. 1139-1151
|
[74] |
Wu, C.-L., Hwang, C.-S., Chen, S.-D. et al. Neuroprotective mechanisms of brain-derived neurotrophic factor against 3-nitropropionic acid toxicity: therapeutic implications for Huntington's disease Ann. NY Acad. Sci., 1201 (2010),pp. 8-12
|
[75] |
Yang, D., Wang, C.E., Zhao, B. et al. Expression of Huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs Hum. Mol. Genet., 19 (2010),pp. 3983-3994
|
[76] |
Yang, S.-H., Cheng, P.-H., Banta, H. et al. Towards a transgenic model of Huntington's disease in a non-human primate Nature, 453 (2008),pp. 921-924
|
[77] |
Yuan, S.H., Martin, J., Elia, J. et al. Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells PLoS ONE, 6 (2011),p. e17540
|
[78] |
Zhang, N., An, M.C., Montoro, D. et al. Characterization of human Huntington's disease cell model from induced pluripotent stem cells PLoS Curr., 2 (2010),p. RRN1193
|
[79] |
Zhang, Y., Friedlander, R.M. Using non-coding small RNAs to develop therapies for Huntington's disease Gene Ther., 18 (2011),pp. 1139-1149
|
[80] |
Zuccato, C., Cattaneo, E. Brain-derived neurotrophic factor in neurodegenerative diseases Nat. Rev. Neurol., 5 (2009),pp. 311-322
|
[81] |
Zuccato, C., Valenza, M., Cattaneo, E. Molecular mechanisms and potential therapeutical targets in Huntington's disease Physiol. Rev., 90 (2010),pp. 905-981
|