5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 5
May  2012
Turn off MathJax
Article Contents

Plant PRMTs Broaden the Scope of Arginine Methylation

doi: 10.1016/j.jgg.2012.04.001
More Information
  • Corresponding author: E-mail address: xfcao@genetics.ac.cn (Xiaofeng Cao)
  • Received Date: 2012-02-29
  • Accepted Date: 2012-04-02
  • Rev Recd Date: 2012-04-02
  • Available Online: 2012-04-11
  • Publish Date: 2012-05-20
  • Post-translational methylation at arginine residues is one of the most important covalent modifications of proteins, involved in a myriad of essential cellular processes in eukaryotes, such as transcriptional regulation, RNA processing, signal transduction, and DNA repair. Methylation at arginine residues is catalyzed by a family of enzymes called protein arginine methyltransferases (PRMTs). PRMTs have been extensively studied in various taxa and there is a growing tendency to unveil their functional importance in plants. Recent studies in plants revealed that this evolutionarily conserved family of enzymes regulates essential traits including vegetative growth, flowering time, circadian cycle, and response to high medium salinity and ABA. In this review, we highlight recent advances in the field of post-translational arginine methylation with special emphasis on the roles and future prospects of this modification in plants.
  • loading
  • [1]
    Ahmad, A., Zhang, Y., Cao, X.F. Decoding the epigenetic language of plant development Mol. Plant, 3 (2010),pp. 719-728
    [2]
    Ahmad, A., Dong, Y., Cao, X. Characterization of the PRMT gene family in rice reveals conservation of arginine methylation PloS One, 6 (2011),p. e22664
    [3]
    Anne, J. Development, 137 (2010),pp. 2819-2828
    [4]
    Bachand, F., Silver, P.A. PRMT3 is a ribosomal protein methyltransferase that affects the cellular levels of ribosomal subunits EMBO J., 23 (2004),pp. 2641-2650
    [5]
    Bachand, F. Protein arginine methyltransferases: from unicellular eukaryotes to humans Eukaryot. Cell, 6 (2007),pp. 889-898
    [6]
    Bannister, A.J., Kouzarides, T. Regulation of chromatin by histone modifications Cell Res., 21 (2011),pp. 381-395
    [7]
    Bauer, U.M., Daujat, S., Nielsen, S.J. et al. Methylation at arginine 17 of histone H3 is linked to gene activation EMBO Rep., 3 (2002),pp. 39-44
    [8]
    Bedford, M.T., Clarke, S.G. Protein arginine methylation in mammals: who, what, and why Mol. Cell, 33 (2009),pp. 1-13
    [9]
    Bedford, M.T., Richard, S. Arginine methylation: an emerging regulator of protein function Mol. Cell, 18 (2005),pp. 263-272
    [10]
    Blackwell, E., Ceman, S. Arginine methylation of RNA-binding proteins regulates cell function and differentiation Mol. Reprod. Dev., 79 (2011),pp. 163-175
    [11]
    Blythe, S.A., Cha, S.W., Tadjuidje, E. et al. [Beta]-catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2 Dev. Cell, 19 (2010),pp. 220-231
    [12]
    Branscombe, T.L., Frankel, A., Lee, J.H. et al. PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins J. Biol. Chem., 276 (2001),pp. 32971-32976
    [13]
    Buhr, N., Carapito, C., Schaeffer, C. et al. Nuclear proteome analysis of undifferentiated mouse embryonic stem and germ cells Electrophoresis, 29 (2008),pp. 2381-2390
    [14]
    Byrne, M.E. A role for the ribosome in development Trends Plant Sci., 14 (2009),pp. 512-519
    [15]
    Campbell, M., Chang, P.C., Huerta, S. et al. J. Biol. Chem., 287 (2012),pp. 5806-5818
    [16]
    Chang, B., Chen, Y., Zhao, Y. et al. JMJD6 is a histone arginine demethylase Science, 318 (2007),pp. 444-447
    [17]
    Chen, D., Ma, H., Hong, H. et al. Regulation of transcription by a protein methyltransferase Science, 284 (1999),pp. 2174-2177
    [18]
    Chen, C., Nott, T.J., Jin, J. et al. Deciphering arginine methylation: Tudor tells the tale Nat. Rev. Mol. Cell Biol., 12 (2011),pp. 629-642
    [19]
    Cheng, X., Collins, R.E., Zhang, X. Structural and sequence motifs of protein (histone) methylation enzymes. Annu. Rev. Biophy. Biomol Struct, 34 (2005),pp. 267-294
    [20]
    Cheng, D., Cote, J., Shaaban, S. et al. The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing Mol. Cell, 25 (2007),pp. 71-83
    [21]
    Cheng, Y., Frazier, M., Lu, F. et al. Crystal structure of the plant epigenetic protein arginine methyltransferase 10 J. Mol. Biol., 414 (2011),pp. 106-122
    [22]
    Chevillard-Briet, M., Trouche, D., Vandel, L. Control of CBP co-activating activity by arginine methylation EMBO J., 21 (2002),pp. 5457-5466
    [23]
    Choi, S., Jung, C.R., Kim, J.Y. et al. PRMT3 inhibits ubiquitination of ribosomal protein S2 and together forms an active enzyme complex Biochim. Biophys. Acta, 1780 (2008),pp. 1062-1069
    [24]
    Cook, J.R., Lee, J.H., Yang, Z.H. et al. FBXO11/PRMT9, a new protein arginine methyltransferase, symmetrically dimethylates arginine residues Biochem. Biophys. Res. Commun., 342 (2006),pp. 472-481
    [25]
    Cuthbert, G.L., Daujat, S., Snowden, A.W. et al. Histone deimination antagonizes arginine methylation Cell, 118 (2004),pp. 545-553
    [26]
    Dalloneau, E., Pereira, P.L., Brault, V. et al. Prmt2 regulates the lipopolysaccharide-induced responses in lungs and macrophages J. Immunol., 187 (2011),pp. 4826-4834
    [27]
    Deng, X., Gu, L., Liu, C. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 19114-19119
    [28]
    Di Lorenzo, A., Bedford, M.T. Histone arginine methylation FEBS Lett., 585 (2010),pp. 2024-2031
    [29]
    El-Andaloussi, N., Valovka, T., Toueille, M. et al. Arginine methylation regulates DNA polymerase [beta] Mol. Cell, 22 (2006),pp. 51-62
    [30]
    Erce, M.A., Pang, C.N.I., Hart-Smith, G. et al. The methylproteome and the intracellular methylation network Proteomics, 12 (2012),pp. 1-23
    [31]
    Feng, Q., He, B., Jung, S.Y. et al. Biochemical control of CARM1 enzymatic activity by phosphorylation J. Biol. Chem., 284 (2009),pp. 36167-36174
    [32]
    Fielenbach, N., Guardavaccaro, D., Neubert, K. et al. Dev. Cell, 12 (2007),pp. 443-455
    [33]
    Frankel, A., Yadav, N., Lee, J. et al. The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity J. Biol. Chem., 277 (2002),pp. 3537-3543
    [34]
    Friesen, W.J., Massenet, S., Paushkin, S. et al. SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets Mol. Cell, 7 (2001),pp. 1111-1117
    [35]
    Fujiwara, T., Mori, Y., Chu, D.L. et al. CARM1 regulates proliferation of PC12 cells by methylating HuD Mol. Cell. Biol., 26 (2006),pp. 2273-2285
    [36]
    Ganesh, L., Yoshimoto, T., Moorthy, N.C. et al. Protein methyltransferase 2 inhibits NF-{kappa} B function and promotes apoptosis Mol. Cell. Biol., 26 (2006),pp. 3864-3874
    [37]
    Gary, J.D., Clarke, S. RNA and protein interactions modulated by protein arginine methylation Prog. Nucleic Acid Res. Mol. Biol., 61 (1998),pp. 65-131
    [38]
    Gonsalvez, G.B., Tian, L., Ospina, J.K. et al. Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins J. Biol. Chem., 178 (2007),pp. 733-740
    [39]
    Gros, L., Delaporte, C., Frey, S. et al. Identification of new drug sensitivity genes using genetic suppressor elements Cancer Res., 63 (2003),pp. 164-171
    [40]
    Guccione, E., Bassi, C., Casadio, F. et al. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive Nature, 449 (2007),pp. 933-937
    [41]
    Haiping, L., Wang, J.Y.S., Huang, Y. et al. Structural basis for methylarginine-dependent recognition of Aubergine by Tudor Genes Dev., 24 (2010),pp. 1876-1881
    [42]
    Handrkova, H., Petrak, J., Halada, P. et al. Tyrosine 87 is vital for the activity of human protein arginine methyltransferase 3 (PRMT3) Biochim. Biophys. Acta, 1814 (2011),pp. 277-282
    [43]
    Harrison, M.J., Tang, Y.H., Dowhan, D.H. Protein arginine methyltransferase 6 regulates multiple aspects of gene expression Nucleic Acids Res., 38 (2010),pp. 2201-2216
    [44]
    Herrmann, F., Lee, J., Bedford, M.T. et al. J. Biol. Chem., 280 (2005),pp. 38005-38010
    [45]
    Herrmann, F., Pably, P., Eckerich, C. et al. Human protein arginine methyltransferases in vivo-distinct properties of eight canonical members of the PRMT family J. Cell Sci., 122 (2009),pp. 667-677
    [46]
    Hong, S., Song, H.R., Lutz, K. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 21211-21216
    [47]
    Iberg, A.N., Espejo, A., Cheng, D. et al. Arginine methylation of the histone H3 tail impedes effector binding J. Biol. Chem., 283 (2008),pp. 3006-3010
    [48]
    Invernizzi, C., Xie, B., Richard, S. et al. PRMT6 diminishes HIV-1 Rev binding to and export of viral RNA Retrovirology, 3 (2006),p. 93
    [49]
    Invernizzi, C.F., Xie, B., Frankel, F.A. et al. Arginine methylation of the HIV-1 nucleocapsid protein results in its diminished function Aids, 21 (2007),pp. 795-805
    [50]
    Iwasaki, H., Kovacic, J.C., Olive, M. et al. Circ. Res., 107 (2010),pp. 992-1001
    [51]
    Jelinic, P., Stehle, J.C., Shaw, P. The testis-specific factor CTCFL cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region methylation PLoS Biol., 4 (2006),p. e355
    [52]
    Kim, J.D., Kako, K., Kakiuchi, M. et al. EWS is a substrate of type I protein arginine methyltransferase, PRMT8 Int. J. Mol. Med., 22 (2008),pp. 309-315
    [53]
    Kim, D., Lee, J., Cheng, D. et al. J. Biol. Chem., 285 (2010),pp. 1147-1152
    [54]
    Krause, C.D., Yang, Z.H., Kim, Y.S. et al. Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential Pharmacol. Ther., 113 (2007),pp. 50-87
    [55]
    Kuhn, P., Chumanov, R., Wang, Y. et al. Automethylation of CARM1 allows coupling of transcription and mRNA splicing Nucleic Acids Res., 39 (2011),pp. 2717-2726
    [56]
    Kwak, Y.T., Guo, J., Prajapati, S. et al. Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties Mol. Cell, 11 (2003),pp. 1055-1066
    [57]
    Kzhyshkowska, J., Kremmer, E., Hofmann, M. et al. Protein arginine methylation during lytic adenovirus infection Biochem. J., 383 (2004),pp. 259-265
    [58]
    Lake, A.N., Bedford, M.T. Protein methylation and DNA repair Mutat. Res., 618 (2007),pp. 91-101
    [59]
    Lee, J., Sayegh, J., Daniel, J. et al. PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family J. Biol. Chem., 280 (2005),pp. 32890-32896
    [60]
    Lin, W.J., Gary, J.D., Yang, M.C. et al. The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase J. Biol. Chem., 271 (1996),pp. 15034-15044
    [61]
    Liu, K., Chen, C., Guo, Y. et al. Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 18398-18403
    [62]
    Liu, K., Guo, Y., Liu, H. et al. Crystal structure of TDRD3 and methyl-arginine binding characterization of TDRD3, SMN and SPF30 PLoS One, 7 (2012),p. e30375
    [63]
    Long, Y., Meng, F., Kondo, N. et al. Conserved arginine residue in the membrane-spanning domain of HIV-1 gp41 is required for efficient membrane fusion Protein Cell, 2 (2011),pp. 369-376
    [64]
    Lynch, M., Conery, J.S. The evolutionary fate and consequences of duplicate genes Science, 290 (2000),pp. 1151-1155
    [65]
    Mantri, M., Krojer, T., Bagg, E.A. et al. Crystal structure of the 2-oxoglutarate-and Fe (II)-dependent lysyl hydroxylase JMJD6 J. Mol. Biol., 401 (2010),pp. 211-222
    [66]
    Meister, G., Fischer, U. Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs EMBO J., 21 (2002),pp. 5853-5863
    [67]
    Meyer, R., Wolf, S.S., Obendorf, M. PRMT2, a member of the protein arginine methyltransferase family, is a coactivator of the androgen receptor J. Steroid Biochem. Mol. Biol., 107 (2007),pp. 1-14
    [68]
    Michaels, S.D., Amasino, R.M. Plant Cell, 11 (1999),pp. 949-956
    [69]
    Miranda, T.B., Miranda, M., Frankel, A. et al. PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity J. Biol. Chem., 279 (2004),pp. 22902-22907
    [70]
    Mowen, K.A., Schurter, B.T., Fathman, J.W. et al. Arginine methylation of NIP45 modulates cytokine gene expression in effector T lymphocytes Mol. Cell, 15 (2004),pp. 559-571
    [71]
    Nishida, K.M., Okada, T.N., Kawamura, T. et al. EMBO J., 28 (2009),pp. 3820-3831
    [72]
    Niu, L., Lu, F., Pei, Y. et al. Regulation of flowering time by the protein arginine methyltransferase AtPRMT10 EMBO Rep., 8 (2007),pp. 1190-1195
    [73]
    Niu, L., Zhang, Y., Pei, Y. et al. Plant Physiol., 148 (2008),pp. 490-503
    [74]
    O'Brien, K.B., Alberich-Jordà, M., Yadav, N. et al. CARM1 is required for proper control of proliferation and differentiation of pulmonary epithelial cells Development, 137 (2010),pp. 2147-2156
    [75]
    Ohkura, N., Takahashi, M., Yaguchi, H. et al. Coactivator-associated arginine methyltransferase 1, CARM1, affects pre-mRNA splicing in an isoform-specific manner J. Biol. Chem., 280 (2005),pp. 28927-28935
    [76]
    Pahlich, S., Zakaryan, R.P., Gehring, H. Protein arginine methylation: cellular functions and methods of analysis Biochim. Biophys. Acta, 1764 (2006),pp. 1890-1903
    [77]
    Pahlich, S., Zakaryan, R.P., Gehring, H. Identification of proteins interacting with protein arginine methyltransferase 8: the Ewing sarcoma (EWS) protein binds independent of its methylation state Proteins, 72 (2008),pp. 1125-1137
    [78]
    Paik, W.K., Paik, D.C., Kim, S. Historical review: the field of protein methylation Trends Biochem. Sci., 32 (2007),pp. 146-152
    [79]
    Pak, M.L., Lakowski, T.M., Thomas, D. et al. A protein arginine N-methyltransferase 1 and 2 heteromeric interaction increases PRMT1 enzymatic activity Biochemistry, 50 (2011),pp. 8226-8240
    [80]
    Pal, S., Vishwanath, S.N., Erdjument-Bromage, H. et al. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes Mol. Cell. Biol., 24 (2004),pp. 9630-9645
    [81]
    Pawlak, M.R., Scherer, C.A., Chen, J. et al. Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable Mol. Cell. Biol., 20 (2000),pp. 4859-4869
    [82]
    Pei, Y., Niu, L., Lu, F. et al. Plant Physiol., 144 (2007),pp. 1913-1923
    [83]
    Perreault, A., Gascon, S., D'Amours, A. et al. A methyltransferase-independent function for Rmt3 in ribosomal subunit homeostasis J. Biol. Chem., 284 (2009),pp. 15026-15037
    [84]
    Pollack, B.P., Kotenko, S.V., He, W. et al. The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity J. Biol. Chem., 274 (1999),pp. 31531-31542
    [85]
    Qi, C., Chang, J., Zhu, Y. et al. Identification of protein arginine methyltransferase 2 as a coactivator for estrogen receptor α J. Biol. Chem., 277 (2002),pp. 28624-28630
    [86]
    Raijmakers, R., Zendman, A.J.W., Egberts, W.V. et al. Methylation of arginine residues interferes with citrullination by peptidylarginine deiminases in vitro J. Mol. Biol., 367 (2007),pp. 1118-1129
    [87]
    Ren, J., Wang, Y., Liang, Y. et al. Methylation of ribosomal protein S10 by protein-arginine methyltransferase 5 regulates ribosome biogenesis J. Biol. Chem., 285 (2010),pp. 12695-12705
    [88]
    Rho, J., Choi, S., Jung, C.R. et al. Arginine methylation of Sam68 and SLM proteins negatively regulates their poly (U) RNA binding activity Arch. Biochem. Biophys., 466 (2007),pp. 49-57
    [89]
    Sanchez, S.E., Petrillo, E., Beckwith, E.J. et al. A methyl transferase links the circadian clock to the regulation of alternative splicing Nature, 468 (2010),pp. 112-116
    [90]
    Sayegh, J., Webb, K., Cheng, D. et al. Regulation of protein arginine methyltransferase 8 (PRMT8) activity by its N-terminal domain J. Biol. Chem., 282 (2007),pp. 36444-36453
    [91]
    Scebba, F., De Bastiani, M., Bernacchia, G. et al. Plant J., 52 (2007),pp. 210-222
    [92]
    Schurter, B.T., Koh, S.S., Chen, D. et al. Methylation of histone H3 by coactivator-associated arginine methyltransferase 1 Biochemistry, 40 (2001),pp. 5747-5756
    [93]
    Scott, H.S., Antonarakis, S.E., Lalioti, M.D. et al. Identification and characterization of two putative human arginine methyltransferases (HRMT1L1 and HRMT1L2) Genomics, 48 (1998),pp. 330-340
    [94]
    Shi, Y., Lan, F., Matson, C. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1 Cell, 119 (2004),pp. 941-953
    [95]
    Sims, R.J., Rojas, L.A., Beck, D. et al. The C-terminal domain of RNA polymerase II is modified by site-specific methylation Science, 332 (2011),pp. 99-103
    [96]
    Sivakumaran, H., Van Der Horst, A., Fulcher, A.J. et al. Arginine methylation increases the stability of human immunodeficiency virus type 1 Tat J. Virol., 83 (2009),pp. 11694-11703
    [97]
    Smith, W.A., Schurter, B.T., Wong-Staal, F. et al. Arginine methylation of RNA helicase a determines its subcellular localization J. Biol. Chem., 279 (2004),pp. 22795-22798
    [98]
    Sun, L., Wang, M., Lv, Z. et al. Structural insights into protein arginine symmetric dimethylation by PRMT5 Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 20538-20543
    [99]
    Swiercz, R., Person, M.D., Bedford, M.T. Ribosomal protein S2 is a substrate for mammalian PRMT3 (protein arginine methyltransferase 3) Biochem. J., 386 (2005),pp. 85-91
    [100]
    Swiercz, R., Cheng, D., Kim, D. et al. Ribosomal protein rpS2 is hypomethylated in PRMT3-deficient mice J. Biol. Chem., 282 (2007),pp. 16917-16923
    [101]
    Tan, C.P., Nakielny, S. Control of the DNA methylation system component MBD2 by protein arginine methylation Mol. Cell. Biol., 26 (2006),pp. 7224-7235
    [102]
    Tang, J., Gary, J.D., Clarke, S. et al. PRMT 3, a type I protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation J. Biol. Chem., 273 (1998),pp. 16935-16945
    [103]
    Thomassen, M., Tan, Q., Kruse, T.A. Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis Breast Cancer Res. Treat., 113 (2009),pp. 239-249
    [104]
    Torres-Padilla, M.E., Parfitt, D.E., Kouzarides, T. et al. Histone arginine methylation regulates pluripotency in the early mouse embryo Nature, 445 (2007),pp. 214-218
    [105]
    Waldmann, T., Izzo, A., Kamieniarz, K. et al. Methylation of H2AR29 is a novel repressive PRMT6 target Epigenetics Chromatin, 4 (2011),p. 11
    [106]
    Wang, H., Huang, Z.Q., Xia, L. et al. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor Science, 293 (2001),pp. 853-857
    [107]
    Wang, X., Zhang, Y., Ma, Q. et al. EMBO J., 26 (2007),pp. 1934-1941
    [108]
    Webby, C.J., Wolf, A., Gromak, N. et al. Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing Science, 325 (2009),pp. 90-93
    [109]
    Xie, B., Invernizzi, C.F., Richard, S. et al. Arginine methylation of the human immunodeficiency virus type 1 Tat protein by PRMT6 negatively affects Tat interactions with both cyclin T1 and the Tat transactivation region J. Virol., 81 (2007),pp. 4226-4234
    [110]
    Yan, D., Zhang, Y., Niu, L. et al. Biochem. J., 408 (2007),pp. 113-121
    [111]
    Yang, Y., Lu, Y., Espejo, A. et al. TDRD3 is an effector molecule for arginine-methylated histone marks Mol. Cell, 40 (2010),pp. 1016-1023
    [112]
    Ying, M., Chen, D. Dev. Growth Dif, 54 (2012),pp. 32-43
    [113]
    Yoshimatsu, M., Toyokawa, G., Hayami, S. et al. Dysregulation of PRMT1 and PRMT6, Type I arginine methyltransferases, is involved in various types of human cancers Int. J. Cancer, 128 (2011),pp. 562-573
    [114]
    Yu, J., Shin, B., Park, E.S. et al. Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation Biochem. Biophys. Res. Commun., 391 (2010),pp. 322-328
    [115]
    Yu, M.C. The role of protein arginine methylation in mRNP dynamics Mol. Cell. Biol., 2011 (2011),pp. 1-10
    [116]
    Zhang, X., Cheng, X. Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides Structure, 11 (2003),pp. 509-520
    [117]
    Zhang, Z., Zhang, S., Zhang, Y. et al. Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation Plant Cell, 23 (2011),pp. 396-411
    [118]
    Zhao, X., Jankovic, V., Gural, A. et al. Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity Genes Dev., 22 (2008),pp. 640-653
    [119]
    Zhao, Q., Rank, G., Tan, Y.T. et al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing Nat. Struct. Mol. Biol., 16 (2009),pp. 304-311
    [120]
    Zheng, Z., Schmidt-Ott, K.M., Chua, S. et al. A Mendelian locus on chromosome 16 determines susceptibility to doxorubicin nephropathy in the mouse Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 2502-2507
    [121]
    Zhong, J., Cao, R.X., Zu, X.Y. et al. Identification and characterization of novel spliced variants of PRMT2 in breast carcinoma FEBS J., 279 (2012),pp. 316-335
    [122]
    Zhou, Z., Sun, X., Zou, Z. et al. PRMT5 regulates Golgi apparatus structure through methylation of the golgin GM130 Cell Res., 20 (2010),pp. 1023-1033
    [123]
    Zurita-Lopez, C.I., Sandberg, T., Kelly, R. et al. Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming ω-NG-monomethylated arginine residues J. Biol. Chem., 287 (2012),pp. 7859-7870
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (80) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return