[1] |
Ahmad, A., Zhang, Y., Cao, X.F. Decoding the epigenetic language of plant development Mol. Plant, 3 (2010),pp. 719-728
|
[2] |
Ahmad, A., Dong, Y., Cao, X. Characterization of the PRMT gene family in rice reveals conservation of arginine methylation PloS One, 6 (2011),p. e22664
|
[3] |
Anne, J. Development, 137 (2010),pp. 2819-2828
|
[4] |
Bachand, F., Silver, P.A. PRMT3 is a ribosomal protein methyltransferase that affects the cellular levels of ribosomal subunits EMBO J., 23 (2004),pp. 2641-2650
|
[5] |
Bachand, F. Protein arginine methyltransferases: from unicellular eukaryotes to humans Eukaryot. Cell, 6 (2007),pp. 889-898
|
[6] |
Bannister, A.J., Kouzarides, T. Regulation of chromatin by histone modifications Cell Res., 21 (2011),pp. 381-395
|
[7] |
Bauer, U.M., Daujat, S., Nielsen, S.J. et al. Methylation at arginine 17 of histone H3 is linked to gene activation EMBO Rep., 3 (2002),pp. 39-44
|
[8] |
Bedford, M.T., Clarke, S.G. Protein arginine methylation in mammals: who, what, and why Mol. Cell, 33 (2009),pp. 1-13
|
[9] |
Bedford, M.T., Richard, S. Arginine methylation: an emerging regulator of protein function Mol. Cell, 18 (2005),pp. 263-272
|
[10] |
Blackwell, E., Ceman, S. Arginine methylation of RNA-binding proteins regulates cell function and differentiation Mol. Reprod. Dev., 79 (2011),pp. 163-175
|
[11] |
Blythe, S.A., Cha, S.W., Tadjuidje, E. et al. [Beta]-catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2 Dev. Cell, 19 (2010),pp. 220-231
|
[12] |
Branscombe, T.L., Frankel, A., Lee, J.H. et al. PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins J. Biol. Chem., 276 (2001),pp. 32971-32976
|
[13] |
Buhr, N., Carapito, C., Schaeffer, C. et al. Nuclear proteome analysis of undifferentiated mouse embryonic stem and germ cells Electrophoresis, 29 (2008),pp. 2381-2390
|
[14] |
Byrne, M.E. A role for the ribosome in development Trends Plant Sci., 14 (2009),pp. 512-519
|
[15] |
Campbell, M., Chang, P.C., Huerta, S. et al. J. Biol. Chem., 287 (2012),pp. 5806-5818
|
[16] |
Chang, B., Chen, Y., Zhao, Y. et al. JMJD6 is a histone arginine demethylase Science, 318 (2007),pp. 444-447
|
[17] |
Chen, D., Ma, H., Hong, H. et al. Regulation of transcription by a protein methyltransferase Science, 284 (1999),pp. 2174-2177
|
[18] |
Chen, C., Nott, T.J., Jin, J. et al. Deciphering arginine methylation: Tudor tells the tale Nat. Rev. Mol. Cell Biol., 12 (2011),pp. 629-642
|
[19] |
Cheng, X., Collins, R.E., Zhang, X. Structural and sequence motifs of protein (histone) methylation enzymes. Annu. Rev. Biophy. Biomol Struct, 34 (2005),pp. 267-294
|
[20] |
Cheng, D., Cote, J., Shaaban, S. et al. The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing Mol. Cell, 25 (2007),pp. 71-83
|
[21] |
Cheng, Y., Frazier, M., Lu, F. et al. Crystal structure of the plant epigenetic protein arginine methyltransferase 10 J. Mol. Biol., 414 (2011),pp. 106-122
|
[22] |
Chevillard-Briet, M., Trouche, D., Vandel, L. Control of CBP co-activating activity by arginine methylation EMBO J., 21 (2002),pp. 5457-5466
|
[23] |
Choi, S., Jung, C.R., Kim, J.Y. et al. PRMT3 inhibits ubiquitination of ribosomal protein S2 and together forms an active enzyme complex Biochim. Biophys. Acta, 1780 (2008),pp. 1062-1069
|
[24] |
Cook, J.R., Lee, J.H., Yang, Z.H. et al. FBXO11/PRMT9, a new protein arginine methyltransferase, symmetrically dimethylates arginine residues Biochem. Biophys. Res. Commun., 342 (2006),pp. 472-481
|
[25] |
Cuthbert, G.L., Daujat, S., Snowden, A.W. et al. Histone deimination antagonizes arginine methylation Cell, 118 (2004),pp. 545-553
|
[26] |
Dalloneau, E., Pereira, P.L., Brault, V. et al. Prmt2 regulates the lipopolysaccharide-induced responses in lungs and macrophages J. Immunol., 187 (2011),pp. 4826-4834
|
[27] |
Deng, X., Gu, L., Liu, C. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 19114-19119
|
[28] |
Di Lorenzo, A., Bedford, M.T. Histone arginine methylation FEBS Lett., 585 (2010),pp. 2024-2031
|
[29] |
El-Andaloussi, N., Valovka, T., Toueille, M. et al. Arginine methylation regulates DNA polymerase [beta] Mol. Cell, 22 (2006),pp. 51-62
|
[30] |
Erce, M.A., Pang, C.N.I., Hart-Smith, G. et al. The methylproteome and the intracellular methylation network Proteomics, 12 (2012),pp. 1-23
|
[31] |
Feng, Q., He, B., Jung, S.Y. et al. Biochemical control of CARM1 enzymatic activity by phosphorylation J. Biol. Chem., 284 (2009),pp. 36167-36174
|
[32] |
Fielenbach, N., Guardavaccaro, D., Neubert, K. et al. Dev. Cell, 12 (2007),pp. 443-455
|
[33] |
Frankel, A., Yadav, N., Lee, J. et al. The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity J. Biol. Chem., 277 (2002),pp. 3537-3543
|
[34] |
Friesen, W.J., Massenet, S., Paushkin, S. et al. SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets Mol. Cell, 7 (2001),pp. 1111-1117
|
[35] |
Fujiwara, T., Mori, Y., Chu, D.L. et al. CARM1 regulates proliferation of PC12 cells by methylating HuD Mol. Cell. Biol., 26 (2006),pp. 2273-2285
|
[36] |
Ganesh, L., Yoshimoto, T., Moorthy, N.C. et al. Protein methyltransferase 2 inhibits NF-{kappa} B function and promotes apoptosis Mol. Cell. Biol., 26 (2006),pp. 3864-3874
|
[37] |
Gary, J.D., Clarke, S. RNA and protein interactions modulated by protein arginine methylation Prog. Nucleic Acid Res. Mol. Biol., 61 (1998),pp. 65-131
|
[38] |
Gonsalvez, G.B., Tian, L., Ospina, J.K. et al. Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins J. Biol. Chem., 178 (2007),pp. 733-740
|
[39] |
Gros, L., Delaporte, C., Frey, S. et al. Identification of new drug sensitivity genes using genetic suppressor elements Cancer Res., 63 (2003),pp. 164-171
|
[40] |
Guccione, E., Bassi, C., Casadio, F. et al. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive Nature, 449 (2007),pp. 933-937
|
[41] |
Haiping, L., Wang, J.Y.S., Huang, Y. et al. Structural basis for methylarginine-dependent recognition of Aubergine by Tudor Genes Dev., 24 (2010),pp. 1876-1881
|
[42] |
Handrkova, H., Petrak, J., Halada, P. et al. Tyrosine 87 is vital for the activity of human protein arginine methyltransferase 3 (PRMT3) Biochim. Biophys. Acta, 1814 (2011),pp. 277-282
|
[43] |
Harrison, M.J., Tang, Y.H., Dowhan, D.H. Protein arginine methyltransferase 6 regulates multiple aspects of gene expression Nucleic Acids Res., 38 (2010),pp. 2201-2216
|
[44] |
Herrmann, F., Lee, J., Bedford, M.T. et al. J. Biol. Chem., 280 (2005),pp. 38005-38010
|
[45] |
Herrmann, F., Pably, P., Eckerich, C. et al. Human protein arginine methyltransferases in vivo-distinct properties of eight canonical members of the PRMT family J. Cell Sci., 122 (2009),pp. 667-677
|
[46] |
Hong, S., Song, H.R., Lutz, K. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 21211-21216
|
[47] |
Iberg, A.N., Espejo, A., Cheng, D. et al. Arginine methylation of the histone H3 tail impedes effector binding J. Biol. Chem., 283 (2008),pp. 3006-3010
|
[48] |
Invernizzi, C., Xie, B., Richard, S. et al. PRMT6 diminishes HIV-1 Rev binding to and export of viral RNA Retrovirology, 3 (2006),p. 93
|
[49] |
Invernizzi, C.F., Xie, B., Frankel, F.A. et al. Arginine methylation of the HIV-1 nucleocapsid protein results in its diminished function Aids, 21 (2007),pp. 795-805
|
[50] |
Iwasaki, H., Kovacic, J.C., Olive, M. et al. Circ. Res., 107 (2010),pp. 992-1001
|
[51] |
Jelinic, P., Stehle, J.C., Shaw, P. The testis-specific factor CTCFL cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region methylation PLoS Biol., 4 (2006),p. e355
|
[52] |
Kim, J.D., Kako, K., Kakiuchi, M. et al. EWS is a substrate of type I protein arginine methyltransferase, PRMT8 Int. J. Mol. Med., 22 (2008),pp. 309-315
|
[53] |
Kim, D., Lee, J., Cheng, D. et al. J. Biol. Chem., 285 (2010),pp. 1147-1152
|
[54] |
Krause, C.D., Yang, Z.H., Kim, Y.S. et al. Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential Pharmacol. Ther., 113 (2007),pp. 50-87
|
[55] |
Kuhn, P., Chumanov, R., Wang, Y. et al. Automethylation of CARM1 allows coupling of transcription and mRNA splicing Nucleic Acids Res., 39 (2011),pp. 2717-2726
|
[56] |
Kwak, Y.T., Guo, J., Prajapati, S. et al. Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties Mol. Cell, 11 (2003),pp. 1055-1066
|
[57] |
Kzhyshkowska, J., Kremmer, E., Hofmann, M. et al. Protein arginine methylation during lytic adenovirus infection Biochem. J., 383 (2004),pp. 259-265
|
[58] |
Lake, A.N., Bedford, M.T. Protein methylation and DNA repair Mutat. Res., 618 (2007),pp. 91-101
|
[59] |
Lee, J., Sayegh, J., Daniel, J. et al. PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family J. Biol. Chem., 280 (2005),pp. 32890-32896
|
[60] |
Lin, W.J., Gary, J.D., Yang, M.C. et al. The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase J. Biol. Chem., 271 (1996),pp. 15034-15044
|
[61] |
Liu, K., Chen, C., Guo, Y. et al. Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 18398-18403
|
[62] |
Liu, K., Guo, Y., Liu, H. et al. Crystal structure of TDRD3 and methyl-arginine binding characterization of TDRD3, SMN and SPF30 PLoS One, 7 (2012),p. e30375
|
[63] |
Long, Y., Meng, F., Kondo, N. et al. Conserved arginine residue in the membrane-spanning domain of HIV-1 gp41 is required for efficient membrane fusion Protein Cell, 2 (2011),pp. 369-376
|
[64] |
Lynch, M., Conery, J.S. The evolutionary fate and consequences of duplicate genes Science, 290 (2000),pp. 1151-1155
|
[65] |
Mantri, M., Krojer, T., Bagg, E.A. et al. Crystal structure of the 2-oxoglutarate-and Fe (II)-dependent lysyl hydroxylase JMJD6 J. Mol. Biol., 401 (2010),pp. 211-222
|
[66] |
Meister, G., Fischer, U. Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs EMBO J., 21 (2002),pp. 5853-5863
|
[67] |
Meyer, R., Wolf, S.S., Obendorf, M. PRMT2, a member of the protein arginine methyltransferase family, is a coactivator of the androgen receptor J. Steroid Biochem. Mol. Biol., 107 (2007),pp. 1-14
|
[68] |
Michaels, S.D., Amasino, R.M. Plant Cell, 11 (1999),pp. 949-956
|
[69] |
Miranda, T.B., Miranda, M., Frankel, A. et al. PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity J. Biol. Chem., 279 (2004),pp. 22902-22907
|
[70] |
Mowen, K.A., Schurter, B.T., Fathman, J.W. et al. Arginine methylation of NIP45 modulates cytokine gene expression in effector T lymphocytes Mol. Cell, 15 (2004),pp. 559-571
|
[71] |
Nishida, K.M., Okada, T.N., Kawamura, T. et al. EMBO J., 28 (2009),pp. 3820-3831
|
[72] |
Niu, L., Lu, F., Pei, Y. et al. Regulation of flowering time by the protein arginine methyltransferase AtPRMT10 EMBO Rep., 8 (2007),pp. 1190-1195
|
[73] |
Niu, L., Zhang, Y., Pei, Y. et al. Plant Physiol., 148 (2008),pp. 490-503
|
[74] |
O'Brien, K.B., Alberich-Jordà, M., Yadav, N. et al. CARM1 is required for proper control of proliferation and differentiation of pulmonary epithelial cells Development, 137 (2010),pp. 2147-2156
|
[75] |
Ohkura, N., Takahashi, M., Yaguchi, H. et al. Coactivator-associated arginine methyltransferase 1, CARM1, affects pre-mRNA splicing in an isoform-specific manner J. Biol. Chem., 280 (2005),pp. 28927-28935
|
[76] |
Pahlich, S., Zakaryan, R.P., Gehring, H. Protein arginine methylation: cellular functions and methods of analysis Biochim. Biophys. Acta, 1764 (2006),pp. 1890-1903
|
[77] |
Pahlich, S., Zakaryan, R.P., Gehring, H. Identification of proteins interacting with protein arginine methyltransferase 8: the Ewing sarcoma (EWS) protein binds independent of its methylation state Proteins, 72 (2008),pp. 1125-1137
|
[78] |
Paik, W.K., Paik, D.C., Kim, S. Historical review: the field of protein methylation Trends Biochem. Sci., 32 (2007),pp. 146-152
|
[79] |
Pak, M.L., Lakowski, T.M., Thomas, D. et al. A protein arginine N-methyltransferase 1 and 2 heteromeric interaction increases PRMT1 enzymatic activity Biochemistry, 50 (2011),pp. 8226-8240
|
[80] |
Pal, S., Vishwanath, S.N., Erdjument-Bromage, H. et al. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes Mol. Cell. Biol., 24 (2004),pp. 9630-9645
|
[81] |
Pawlak, M.R., Scherer, C.A., Chen, J. et al. Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable Mol. Cell. Biol., 20 (2000),pp. 4859-4869
|
[82] |
Pei, Y., Niu, L., Lu, F. et al. Plant Physiol., 144 (2007),pp. 1913-1923
|
[83] |
Perreault, A., Gascon, S., D'Amours, A. et al. A methyltransferase-independent function for Rmt3 in ribosomal subunit homeostasis J. Biol. Chem., 284 (2009),pp. 15026-15037
|
[84] |
Pollack, B.P., Kotenko, S.V., He, W. et al. The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity J. Biol. Chem., 274 (1999),pp. 31531-31542
|
[85] |
Qi, C., Chang, J., Zhu, Y. et al. Identification of protein arginine methyltransferase 2 as a coactivator for estrogen receptor α J. Biol. Chem., 277 (2002),pp. 28624-28630
|
[86] |
Raijmakers, R., Zendman, A.J.W., Egberts, W.V. et al. Methylation of arginine residues interferes with citrullination by peptidylarginine deiminases in vitro J. Mol. Biol., 367 (2007),pp. 1118-1129
|
[87] |
Ren, J., Wang, Y., Liang, Y. et al. Methylation of ribosomal protein S10 by protein-arginine methyltransferase 5 regulates ribosome biogenesis J. Biol. Chem., 285 (2010),pp. 12695-12705
|
[88] |
Rho, J., Choi, S., Jung, C.R. et al. Arginine methylation of Sam68 and SLM proteins negatively regulates their poly (U) RNA binding activity Arch. Biochem. Biophys., 466 (2007),pp. 49-57
|
[89] |
Sanchez, S.E., Petrillo, E., Beckwith, E.J. et al. A methyl transferase links the circadian clock to the regulation of alternative splicing Nature, 468 (2010),pp. 112-116
|
[90] |
Sayegh, J., Webb, K., Cheng, D. et al. Regulation of protein arginine methyltransferase 8 (PRMT8) activity by its N-terminal domain J. Biol. Chem., 282 (2007),pp. 36444-36453
|
[91] |
Scebba, F., De Bastiani, M., Bernacchia, G. et al. Plant J., 52 (2007),pp. 210-222
|
[92] |
Schurter, B.T., Koh, S.S., Chen, D. et al. Methylation of histone H3 by coactivator-associated arginine methyltransferase 1 Biochemistry, 40 (2001),pp. 5747-5756
|
[93] |
Scott, H.S., Antonarakis, S.E., Lalioti, M.D. et al. Identification and characterization of two putative human arginine methyltransferases (HRMT1L1 and HRMT1L2) Genomics, 48 (1998),pp. 330-340
|
[94] |
Shi, Y., Lan, F., Matson, C. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1 Cell, 119 (2004),pp. 941-953
|
[95] |
Sims, R.J., Rojas, L.A., Beck, D. et al. The C-terminal domain of RNA polymerase II is modified by site-specific methylation Science, 332 (2011),pp. 99-103
|
[96] |
Sivakumaran, H., Van Der Horst, A., Fulcher, A.J. et al. Arginine methylation increases the stability of human immunodeficiency virus type 1 Tat J. Virol., 83 (2009),pp. 11694-11703
|
[97] |
Smith, W.A., Schurter, B.T., Wong-Staal, F. et al. Arginine methylation of RNA helicase a determines its subcellular localization J. Biol. Chem., 279 (2004),pp. 22795-22798
|
[98] |
Sun, L., Wang, M., Lv, Z. et al. Structural insights into protein arginine symmetric dimethylation by PRMT5 Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 20538-20543
|
[99] |
Swiercz, R., Person, M.D., Bedford, M.T. Ribosomal protein S2 is a substrate for mammalian PRMT3 (protein arginine methyltransferase 3) Biochem. J., 386 (2005),pp. 85-91
|
[100] |
Swiercz, R., Cheng, D., Kim, D. et al. Ribosomal protein rpS2 is hypomethylated in PRMT3-deficient mice J. Biol. Chem., 282 (2007),pp. 16917-16923
|
[101] |
Tan, C.P., Nakielny, S. Control of the DNA methylation system component MBD2 by protein arginine methylation Mol. Cell. Biol., 26 (2006),pp. 7224-7235
|
[102] |
Tang, J., Gary, J.D., Clarke, S. et al. PRMT 3, a type I protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation J. Biol. Chem., 273 (1998),pp. 16935-16945
|
[103] |
Thomassen, M., Tan, Q., Kruse, T.A. Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis Breast Cancer Res. Treat., 113 (2009),pp. 239-249
|
[104] |
Torres-Padilla, M.E., Parfitt, D.E., Kouzarides, T. et al. Histone arginine methylation regulates pluripotency in the early mouse embryo Nature, 445 (2007),pp. 214-218
|
[105] |
Waldmann, T., Izzo, A., Kamieniarz, K. et al. Methylation of H2AR29 is a novel repressive PRMT6 target Epigenetics Chromatin, 4 (2011),p. 11
|
[106] |
Wang, H., Huang, Z.Q., Xia, L. et al. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor Science, 293 (2001),pp. 853-857
|
[107] |
Wang, X., Zhang, Y., Ma, Q. et al. EMBO J., 26 (2007),pp. 1934-1941
|
[108] |
Webby, C.J., Wolf, A., Gromak, N. et al. Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing Science, 325 (2009),pp. 90-93
|
[109] |
Xie, B., Invernizzi, C.F., Richard, S. et al. Arginine methylation of the human immunodeficiency virus type 1 Tat protein by PRMT6 negatively affects Tat interactions with both cyclin T1 and the Tat transactivation region J. Virol., 81 (2007),pp. 4226-4234
|
[110] |
Yan, D., Zhang, Y., Niu, L. et al. Biochem. J., 408 (2007),pp. 113-121
|
[111] |
Yang, Y., Lu, Y., Espejo, A. et al. TDRD3 is an effector molecule for arginine-methylated histone marks Mol. Cell, 40 (2010),pp. 1016-1023
|
[112] |
Ying, M., Chen, D. Dev. Growth Dif, 54 (2012),pp. 32-43
|
[113] |
Yoshimatsu, M., Toyokawa, G., Hayami, S. et al. Dysregulation of PRMT1 and PRMT6, Type I arginine methyltransferases, is involved in various types of human cancers Int. J. Cancer, 128 (2011),pp. 562-573
|
[114] |
Yu, J., Shin, B., Park, E.S. et al. Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation Biochem. Biophys. Res. Commun., 391 (2010),pp. 322-328
|
[115] |
Yu, M.C. The role of protein arginine methylation in mRNP dynamics Mol. Cell. Biol., 2011 (2011),pp. 1-10
|
[116] |
Zhang, X., Cheng, X. Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides Structure, 11 (2003),pp. 509-520
|
[117] |
Zhang, Z., Zhang, S., Zhang, Y. et al. Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation Plant Cell, 23 (2011),pp. 396-411
|
[118] |
Zhao, X., Jankovic, V., Gural, A. et al. Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity Genes Dev., 22 (2008),pp. 640-653
|
[119] |
Zhao, Q., Rank, G., Tan, Y.T. et al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing Nat. Struct. Mol. Biol., 16 (2009),pp. 304-311
|
[120] |
Zheng, Z., Schmidt-Ott, K.M., Chua, S. et al. A Mendelian locus on chromosome 16 determines susceptibility to doxorubicin nephropathy in the mouse Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 2502-2507
|
[121] |
Zhong, J., Cao, R.X., Zu, X.Y. et al. Identification and characterization of novel spliced variants of PRMT2 in breast carcinoma FEBS J., 279 (2012),pp. 316-335
|
[122] |
Zhou, Z., Sun, X., Zou, Z. et al. PRMT5 regulates Golgi apparatus structure through methylation of the golgin GM130 Cell Res., 20 (2010),pp. 1023-1033
|
[123] |
Zurita-Lopez, C.I., Sandberg, T., Kelly, R. et al. Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming ω-NG-monomethylated arginine residues J. Biol. Chem., 287 (2012),pp. 7859-7870
|