[1] |
Allen, B.G., Weeks, D.L. Nat. Methods, 2 (2005),pp. 975-979
|
[2] |
Aneja, M.K., Imker, R., Rudolph, C. Phage phiC31 integrase-mediated genomic integration and long-term gene expression in the lung after nonviral gene delivery J. Gene Med., 9 (2007),pp. 967-975
|
[3] |
Calos, M.P. The phiC31 integrase system for gene therapy Curr. Gene Ther., 6 (2006),pp. 633-645
|
[4] |
Chalberg, T.W., Genise, H.L., Vollrath, D. et al. phiC31 integrase confers genomic integration and long-term transgene expression in rat retina Invest. Ophthalmol. Vis. Sci., 46 (2005),pp. 2140-2146
|
[5] |
Chalberg, T.W., Portlock, J.L., Olivares, E.C. et al. Integration specificity of phage phiC31 integrase in the human genome J. Mol. Biol., 357 (2006),pp. 28-48
|
[6] |
Dewannieux, M., Heidmann, T. LINEs, SINEs and processed pseudogenes: parasitic strategies for genome modeling Cytogenet. Genome Res., 110 (2005),pp. 35-48
|
[7] |
Fish, M.P., Groth, A.C., Calos, M.P. et al. Nat. Protoc., 2 (2007),pp. 2325-2331
|
[8] |
Fu, J., Guan, P., Zhao, L. et al. J. Genet. Genomics, 35 (2008),pp. 273-278
|
[9] |
Groth, A.C., Fish, M., Nusse, R. et al. Genetics, 166 (2004),pp. 1775-1782
|
[10] |
Hollis, R.P., Stoll, S.M., Sclimenti, C.R. et al. Phage integrases for the construction and manipulation of transgenic mammals Reprod. Biol. Endocrinol., 1 (2003),p. 79
|
[11] |
Keravala, A., Ormerod, B.K., Palmer, T.D. et al. Long-term transgene expression in mouse neural progenitor cells modified with phiC31 integrase J. Neurosci. Methods, 173 (2008),pp. 299-305
|
[12] |
Keravala, A., Portlock, J.L., Nash, J.A. et al. PhiC31 integrase mediates integration in cultured synovial cells and enhances gene expression in rabbit joints J. Gene Med., 8 (2006),pp. 1008-1017
|
[13] |
Kind, A., Schnieke, A. Animal pharming, two decades on Transgenic Res., 17 (2008),pp. 1025-1033
|
[14] |
Lewinski, M.K., Yamashita, M., Emerman, M. et al. Retroviral DNA integration: viral and cellular determinants of target-site selection PLoS Pathog., 2 (2006),p. e60
|
[15] |
Ma, Q.W., Sheng, H.Q., Yan, J.B. et al. Identification of pseudo attP sites for phage phiC31 integrase in bovine genome Biochem. Biophys. Res. Commun., 345 (2006),pp. 984-988
|
[16] |
Mitchell, R.S., Beitzel, B.F., Schroder, A.R. et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences PLoS Biol., 2 (2004),p. E234
|
[17] |
Nishiumi, F., Sone, T., Kishine, H. et al. Simultaneous single cell stable expression of 2–4 cDNAs in HeLaS3 using psiC31 integrase system Cell Struct. Funct., 34 (2009),pp. 47-59
|
[18] |
Olivares, E.C., Hollis, R.P., Chalberg, T.W. et al. Site-specific genomic integration produces therapeutic Factor IX levels in mice Nat. Biotechnol., 20 (2002),pp. 1124-1128
|
[19] |
Ou, H.L., Huang, Y., Qu, L.J. et al. A phiC31 integrase-mediated integration hotspot in favor of transgene expression exists in the bovine genome FEBS J., 276 (2009),pp. 155-163
|
[20] |
Perucatti, A., Di Meo, G.P., Goldammer, T. et al. Comparative FISH-mapping of twelve loci in river buffalo and sheep chromosomes: comparison with HSA8p and HSA4q Cytogenet. Genome Res., 119 (2007),pp. 242-244
|
[21] |
Rausch, H., Lehmann, M. Structural analysis of the actinophage phi C31 attachment site Nucleic Acids Res., 19 (1991),pp. 5187-5189
|
[22] |
Schucht, R., Wirth, D., May, T. Precise regulation of transgene expression level and control of cell physiology Cell Biol. Toxicol., 26 (2010),pp. 29-42
|
[23] |
Sivalingam, J., Krishnan, S., Ng, W.H. et al. Biosafety assessment of site-directed transgene integration in human umbilical cord-lining cells Mol. Ther., 18 (2010),pp. 1346-1356
|
[24] |
Thyagarajan, B., Liu, Y., Shin, S. et al. Creation of engineered human embryonic stem cell lines using phiC31 integrase Stem Cells, 26 (2008),pp. 119-126
|
[25] |
Thyagarajan, B., Olivares, E.C., Hollis, R.P. et al. Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase Mol. Cell. Biol., 21 (2001),pp. 3926-3934
|
[26] |
Woodard, L.E., Hillman, R.T., Keravala, A. et al. Effect of nuclear localization and hydrodynamic delivery-induced cell division on phiC31 integrase activity Gene Ther., 17 (2010),pp. 217-226
|
[27] |
Yang, X.Y., Zhao, J.G., Li, H. et al. Anim. Reprod. Sci., 104 (2008),pp. 28-37
|
[1] | Qing Zhang, Jing Li, Yifeng Zhang, Huanfa Gong, Zhimin Zhou, Wenwu Xu, Zhongzi Wu, Yingchun Sun, Tao Jiang, Ziqi Ling, Shijun Xiao, Lusheng Huang, Bin Yang. Whole-genome sequence-based association study for immune cells in an eight-breed pig heterogeneous population[J]. Journal of Genetics and Genomics, 2022, 49(11): 1068-1071. doi: 10.1016/j.jgg.2021.09.003 |
[2] | Dongxue Zhao, Yan Zhang, Yizeng Lu, Liqiang Fan, Zhibin Zhang, Jian Zheng, Mao Chai. Genome sequence and transcriptome of Sorbus pohuashanensis provide insights into population evolution and leaf sunburn response[J]. Journal of Genetics and Genomics, 2022, 49(6): 547-558. doi: 10.1016/j.jgg.2021.12.009 |
[3] | Yan Zhu, Xiujia Yang, Cuiyu Ma, Haipei Tang, Qilong Wang, Junjie Guan, Wenxi Xie, Sen Chen, Yuan Chen, Minhui Wang, Chunhong Lan, Deqiang Sun, Lai Wei, Caijun Sun, Xueqing Yu, Zhenhai Zhang. Antibody upstream sequence diversity and its biological implications revealed by repertoire sequencing[J]. Journal of Genetics and Genomics, 2021, 48(10): 936-945. doi: 10.1016/j.jgg.2021.06.016 |
[4] | Xue Bai, Feifei Li, Zhihua Zhang. A hypothetical model of trans-acting R-loops-mediated promoter-enhancer interactions by Alu elements[J]. Journal of Genetics and Genomics, 2021, 48(11): 1007-1019. doi: 10.1016/j.jgg.2021.07.005 |
[5] | Xiao-Chen Xu, Shuai He, Ya-Qing Zhou, Chu-Jun Liu, Shu-Qiang Liu, Wan Peng, Yu-Xiang Liu, Pan-Pan Wei, Jin-Xin Bei, Chun-Ling Luo. RNA-binding motif protein RBM47 promotes tumorigenesis in nasopharyngeal carcinoma through multiple pathways[J]. Journal of Genetics and Genomics, 2021, 48(7): 595-605. doi: 10.1016/j.jgg.2021.05.006 |
[6] | Jian Wu, Qiao Wang, Wei Dai, Wei Wang, Ming Yue, Jinke Wang. Massive GGAAs in genomic repetitive sequences serve as a nuclear reservoir of NF-κB[J]. Journal of Genetics and Genomics, 2018, 45(4): 193-203. doi: 10.1016/j.jgg.2018.04.002 |
[7] | Wei Dong, Xiaoling Wang, Zhi Xia, Xiuqing Zhang, Huanming Yang. A legacy of the “1% program” – The “Chinese Chapter” of the human genome reference sequence[J]. Journal of Genetics and Genomics, 2018, 45(11): 565-568. doi: 10.1016/j.jgg.2018.10.003 |
[8] | Wanjing Shang, Fei Wang, Gaofeng Fan, Haopeng Wang. Key elements for designing and performing a CRISPR/Cas9-based genetic screen[J]. Journal of Genetics and Genomics, 2017, 44(9): 439-449. doi: 10.1016/j.jgg.2017.09.005 |
[9] | Yuanyuan Liu, Sanyuan Ma, Jiasong Chang, Tong Zhang, Xiaogang Wang, Run Shi, Jianduo Zhang, Wei Lu, Yue Liu, Qingyou Xia. Tissue-specific genome editing of laminA/C in the posterior silk glands of Bombyx mori[J]. Journal of Genetics and Genomics, 2017, 44(9): 451-459. doi: 10.1016/j.jgg.2017.09.003 |
[10] | Shao-Jun Tang. A repetitive DNA-directed program of chromosome packaging during mitosis[J]. Journal of Genetics and Genomics, 2016, 43(8): 471-476. doi: 10.1016/j.jgg.2016.04.003 |
[11] | Purushothaman Natarajan, Madasamy Parani. First Complete Genome Sequence of a Probiotic Enterococcus faecium Strain T-110 and Its Comparative Genome Analysis with Pathogenic and Non-pathogenic Enterococcus faecium Genomes[J]. Journal of Genetics and Genomics, 2015, 42(1): 43-46. doi: 10.1016/j.jgg.2014.07.002 |
[12] | Wen Li, Wei Yang, Xiu-Jie Wang. Pseudogenes: Pseudo or Real Functional Elements?[J]. Journal of Genetics and Genomics, 2013, 40(4): 171-177. doi: 10.1016/j.jgg.2013.03.003 |
[13] | Xin Zhao, Jingyuan Lu, Zhonghua Zhang, Jiajin Hu, Sanwen Huang, Weiwei Jin. Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships[J]. Journal of Genetics and Genomics, 2011, 38(1): 39-45. doi: 10.1016/j.jcg.2010.12.005 |
[14] | Rajib Bandopadhyay, Sachin Rustgi, Rajat Kanti Chaudhuri, Paramjit Khurana, Jitendra Paul Khurana, Akhilesh Kumar Tyagi, Harindra Singh Balyan, Andreas Houben, Pushpendra Kumar Gupta. Use of methylation filtration and C0t fractionation for analysis of genome composition and comparative genomics in bread wheat[J]. Journal of Genetics and Genomics, 2011, 38(7): 315-325. doi: 10.1016/j.jgg.2011.06.003 |
[15] | Qing Ji, Jufei Lu, Qing Chao, Yan Zhang, Meijing Zhang, Minghong Gu, Mingliang Xu. Two sequence alterations, a 136 bp InDel and an A/C polymorphic site, in the S5 locus are associated with spikelet fertility of indica-japonica hybrid in rice[J]. Journal of Genetics and Genomics, 2010, 37(1): 57-68. doi: 10.1016/S1673-8527(09)60025-4 |
[16] | Qifa Li, Zhenshan Liu, Yinxia Li, Xingbo Zhao, Liyan Dong, Zengxiang Pan, Yuanrong Sun, Ning Li, Yinxue Xu, Zhuang Xie. Origin and phylogenetic analysis of Tibetan Mastiff based on the mitochondrial DNA sequence[J]. Journal of Genetics and Genomics, 2008, 35(6): 335-340. doi: 10.1016/S1673-8527(08)60049-1 |
[17] | Jing Fu, Pengfei Guan, Leiwen Zhao, Hua Li, Shuzhen Huang, Fanyi Zeng, Yitao Zeng. Effects of donor cells on in vitro development of cloned bovine embryos[J]. Journal of Genetics and Genomics, 2008, 35(5): 273-278. doi: 10.1016/S1673-8527(08)60039-9 |
[18] | Chaowen She, Jingyu Liu, Ying Diao, Zhongli Hu, Yunchun Song. The Distribution of Repetitive DNAs Along Chromosomes in Plants Revealed by Self-genomic in situ Hybridization[J]. Journal of Genetics and Genomics, 2007, 34(5): 437-448. doi: 10.1016/S1673-8527(07)60048-4 |
[19] | Song Hua, Zhipeng Zhang, Chi Zhang, Yong Zhang. An Improved Enucleation Method of Bovine Somatic Cell Nuclear Transfer[J]. Journal of Genetics and Genomics, 2007, 34(6): 491-496. doi: 10.1016/S1673-8527(07)60054-X |
[20] | Jian Zhong, Hongbin Wang, Dangquan Zhang, Bing Liu, Jinfa Wang. Rice Repetitive DNA Sequence RRD3: a Plant Promoter and Its Application to RNA Interference[J]. Journal of Genetics and Genomics, 2007, 34(3): 258-266. doi: 10.1016/S1673-8527(07)60027-7 |