5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 5
May  2012
Turn off MathJax
Article Contents

A Profile of Native Integration Sites Used by φC31 Integrase in the Bovine Genome

doi: 10.1016/j.jgg.2012.03.004
More Information
  • Corresponding author: E-mail address: fzeng@sjtu.edu.cn (Fanyi Zeng); E-mail address: ytzeng@stn.sh.cn (Yitao Zeng)
  • Received Date: 2012-01-30
  • Accepted Date: 2012-03-30
  • Rev Recd Date: 2012-03-07
  • Available Online: 2012-04-10
  • Publish Date: 2012-05-20
  • The Streptomyces phage φC31 integrase can efficiently target attB-bearing transgenes to endogenous pseudo attP sites within mammalian genomes. To better understand the activity of φC31 integrase in the bovine genome, DNA sequences of 44 integration events were analyzed, and 32 pseudo attP sites were identified. The majority of these sites share a sequence motif that contains inverted repeats and has similarities to wild-type attP site. Genomic DNA flanking these sites typically contained repetitive sequence elements, such as short and long interspersed repetitive elements. These sequence features indicate that DNA sequence recognition plays an important role in guiding φC31-mediated site-specific integration. In addition, BF27 integration hotspot sites were identified in the bovine genome, which accounted for 13.6% of all isolated integration events and mapped to an intron of the deleted in liver cancer 1 (DLC1) gene. Also we found that the pseudo attP sites in the bovine genome had other features in common with those in the human genome. This study represents the first time that the sequence features of pseudo attP sites in the bovine genome were analyzed. We conclude that this site-specific integrase system has great potential for applied modifications of the bovine genome.
  • loading
  • [1]
    Allen, B.G., Weeks, D.L. Nat. Methods, 2 (2005),pp. 975-979
    [2]
    Aneja, M.K., Imker, R., Rudolph, C. Phage phiC31 integrase-mediated genomic integration and long-term gene expression in the lung after nonviral gene delivery J. Gene Med., 9 (2007),pp. 967-975
    [3]
    Calos, M.P. The phiC31 integrase system for gene therapy Curr. Gene Ther., 6 (2006),pp. 633-645
    [4]
    Chalberg, T.W., Genise, H.L., Vollrath, D. et al. phiC31 integrase confers genomic integration and long-term transgene expression in rat retina Invest. Ophthalmol. Vis. Sci., 46 (2005),pp. 2140-2146
    [5]
    Chalberg, T.W., Portlock, J.L., Olivares, E.C. et al. Integration specificity of phage phiC31 integrase in the human genome J. Mol. Biol., 357 (2006),pp. 28-48
    [6]
    Dewannieux, M., Heidmann, T. LINEs, SINEs and processed pseudogenes: parasitic strategies for genome modeling Cytogenet. Genome Res., 110 (2005),pp. 35-48
    [7]
    Fish, M.P., Groth, A.C., Calos, M.P. et al. Nat. Protoc., 2 (2007),pp. 2325-2331
    [8]
    Fu, J., Guan, P., Zhao, L. et al. J. Genet. Genomics, 35 (2008),pp. 273-278
    [9]
    Groth, A.C., Fish, M., Nusse, R. et al. Genetics, 166 (2004),pp. 1775-1782
    [10]
    Hollis, R.P., Stoll, S.M., Sclimenti, C.R. et al. Phage integrases for the construction and manipulation of transgenic mammals Reprod. Biol. Endocrinol., 1 (2003),p. 79
    [11]
    Keravala, A., Ormerod, B.K., Palmer, T.D. et al. Long-term transgene expression in mouse neural progenitor cells modified with phiC31 integrase J. Neurosci. Methods, 173 (2008),pp. 299-305
    [12]
    Keravala, A., Portlock, J.L., Nash, J.A. et al. PhiC31 integrase mediates integration in cultured synovial cells and enhances gene expression in rabbit joints J. Gene Med., 8 (2006),pp. 1008-1017
    [13]
    Kind, A., Schnieke, A. Animal pharming, two decades on Transgenic Res., 17 (2008),pp. 1025-1033
    [14]
    Lewinski, M.K., Yamashita, M., Emerman, M. et al. Retroviral DNA integration: viral and cellular determinants of target-site selection PLoS Pathog., 2 (2006),p. e60
    [15]
    Ma, Q.W., Sheng, H.Q., Yan, J.B. et al. Identification of pseudo attP sites for phage phiC31 integrase in bovine genome Biochem. Biophys. Res. Commun., 345 (2006),pp. 984-988
    [16]
    Mitchell, R.S., Beitzel, B.F., Schroder, A.R. et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences PLoS Biol., 2 (2004),p. E234
    [17]
    Nishiumi, F., Sone, T., Kishine, H. et al. Simultaneous single cell stable expression of 2–4 cDNAs in HeLaS3 using psiC31 integrase system Cell Struct. Funct., 34 (2009),pp. 47-59
    [18]
    Olivares, E.C., Hollis, R.P., Chalberg, T.W. et al. Site-specific genomic integration produces therapeutic Factor IX levels in mice Nat. Biotechnol., 20 (2002),pp. 1124-1128
    [19]
    Ou, H.L., Huang, Y., Qu, L.J. et al. A phiC31 integrase-mediated integration hotspot in favor of transgene expression exists in the bovine genome FEBS J., 276 (2009),pp. 155-163
    [20]
    Perucatti, A., Di Meo, G.P., Goldammer, T. et al. Comparative FISH-mapping of twelve loci in river buffalo and sheep chromosomes: comparison with HSA8p and HSA4q Cytogenet. Genome Res., 119 (2007),pp. 242-244
    [21]
    Rausch, H., Lehmann, M. Structural analysis of the actinophage phi C31 attachment site Nucleic Acids Res., 19 (1991),pp. 5187-5189
    [22]
    Schucht, R., Wirth, D., May, T. Precise regulation of transgene expression level and control of cell physiology Cell Biol. Toxicol., 26 (2010),pp. 29-42
    [23]
    Sivalingam, J., Krishnan, S., Ng, W.H. et al. Biosafety assessment of site-directed transgene integration in human umbilical cord-lining cells Mol. Ther., 18 (2010),pp. 1346-1356
    [24]
    Thyagarajan, B., Liu, Y., Shin, S. et al. Creation of engineered human embryonic stem cell lines using phiC31 integrase Stem Cells, 26 (2008),pp. 119-126
    [25]
    Thyagarajan, B., Olivares, E.C., Hollis, R.P. et al. Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase Mol. Cell. Biol., 21 (2001),pp. 3926-3934
    [26]
    Woodard, L.E., Hillman, R.T., Keravala, A. et al. Effect of nuclear localization and hydrodynamic delivery-induced cell division on phiC31 integrase activity Gene Ther., 17 (2010),pp. 217-226
    [27]
    Yang, X.Y., Zhao, J.G., Li, H. et al. Anim. Reprod. Sci., 104 (2008),pp. 28-37
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (63) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return