5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 4
Apr.  2012
Turn off MathJax
Article Contents

Gene Duplication and the Evolution of Plant MADS-box Transcription Factors

doi: 10.1016/j.jgg.2012.02.008
More Information
  • Corresponding author: E-mail address: b.h.davies@leeds.ac.uk (Brendan Davies)
  • Received Date: 2011-10-21
  • Accepted Date: 2012-02-15
  • Rev Recd Date: 2012-02-14
  • Available Online: 2012-03-17
  • Publish Date: 2012-04-20
  • Since the first MADS-box transcription factor genes were implicated in the establishment of floral organ identity in a couple of model plants, the size and scope of this gene family has begun to be appreciated in a much wider range of species. Over the course of millions of years the number of MADS-box genes in plants has increased to the point that the Arabidopsis genome contains more than 100. The understanding gained from studying the evolution, regulation and function of multiple MADS-box genes in an increasing set of species, makes this large plant transcription factor gene family an ideal subject to study the processes that lead to an increase in gene number and the selective birth, death and repurposing of its component members. Here we will use examples taken from the MADS-box gene family to review what is known about the factors that influence the loss and retention of genes duplicated in different ways and examine the varied fates of the retained genes and their associated biological outcomes.
  • loading
  • [1]
    Airoldi, C.A., Bergonzi, S., Davies, B. Single amino acid change alters the ability to specify male or female organ identity Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 18898-18902
    [2]
    Alvarez-Buylla, E.R., Pelaz, S., Liljegren, S.J. et al. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 5328-5333
    [3]
    Arora, R., Agarwal, P., Ray, S. et al. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress BMC Genomics, 8 (2007),p. 242
    [4]
    Bemer, M., Wolters-Arts, M., Grossniklaus, U. et al. Plant Cell, 20 (2008),pp. 2088-2101
    [5]
    Bemer, M., Heijmans, K., Airoldi, C. et al. Plant Physiol., 154 (2010),pp. 287-300
    [6]
    Berendse, F., Scheffer, M. The angiosperm radiation revisited, an ecological explanation for Darwin's “abominable mystery” Ecol. Lett., 12 (2009),pp. 865-872
    [7]
    Blanc, G., Wolfe, K.H. Plant Cell, 16 (2004),pp. 1679-1691
    [8]
    Bradley, D., Carpenter, R., Sommer, H. et al. Cell, 72 (1993),pp. 85-95
    [9]
    Bushell, C., Spielman, M., Scott, R.J. Plant Cell, 15 (2003),pp. 1430-1442
    [10]
    Causier, B., Schwarz-Sommer, Z., Davies, B. Floral organ identity: 20 years of ABCs Semin. Cell. Dev. Biol., 21 (2010),pp. 73-79
    [11]
    Causier, B., Castillo, R., Xue, Y. et al. Tracing the evolution of the floral homeotic B- and C-function genes through genome synteny Mol. Biol. Evol., 27 (2010),pp. 2651-2664
    [12]
    Causier, B., Castillo, R., Zhou, J. et al. Evolution in action: following function in duplicated floral homeotic genes Curr. Biol., 15 (2005),pp. 1508-1512
    [13]
    Chiang, G.C., Barua, D., Kramer, E.M. et al. Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 11661-11666
    [14]
    Colombo, M., Masiero, S., Vanzulli, S. et al. Plant J., 54 (2008),pp. 1037-1048
    [15]
    Davies, B., Motte, P., Keck, E. et al. EMBO J., 18 (1999),pp. 4023-4034
    [16]
    de Martino, G., Pan, I., Emmanuel, E. et al. Plant Cell, 18 (2006),pp. 1833-1845
    [17]
    Deng, W., Ying, H., Helliwell, C.A. et al. Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 6680-6685
    [18]
    Ditta, G., Pinyopich, A., Robles, P. et al. Curr. Biol., 14 (2004),pp. 1935-1940
    [19]
    Dreni, L., Pilatone, A., Yun, D. et al. Functional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy Plant Cell, 23 (2011),pp. 2850-2863
    [20]
    Edger, P.P., Pires, J.C. Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes Chromos. Res., 17 (2009),pp. 699-717
    [21]
    Favaro, R., Pinyopich, A., Battaglia, R. et al. Plant Cell, 15 (2003),pp. 2603-2611
    [22]
    Fawcett, J.A., Maere, S., Van de Peer, Y. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 5737-5742
    [23]
    Ferrandiz, C., Gu, Q., Martienssen, R. et al. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER Development, 127 (2000),pp. 725-734
    [24]
    Force, A., Lynch, M., Pickett, F.B. et al. Preservation of duplicate genes by complementary, degenerative mutations Genetics, 151 (1999),pp. 1531-1545
    [25]
    Freeling, M., Thomas, B.C. Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity Genome Res., 16 (2006),pp. 805-814
    [26]
    Friedman, W.E. The meaning of Darwin's ‘abominable mystery’ Am. J. Bot., 96 (2009),pp. 5-21
    [27]
    Gazzani, S., Gendall, A.R., Lister, C. et al. Plant Physiol., 132 (2003),pp. 1107-1114
    [28]
    Geuten, K., Irish, V. Hidden variability of floral homeotic B genes in Solanaceae provides a molecular basis for the evolution of novel functions Plant Cell, 22 (2010),pp. 2562-2578
    [29]
    Geuten, K., Viaene, T., Irish, V.F. Robustness and evolvability in the B-system of flower development Ann. Bot., 107 (2011),pp. 1545-1556
    [30]
    Gramzow, L., Ritz, M.S., Theissen, G. On the origin of MADS-domain transcription factors Trends Genet., 26 (2010),pp. 149-153
    [31]
    Gregis, V., Sessa, A., Colombo, L. et al. Plant Cell, 18 (2006),pp. 1373-1382
    [32]
    Gu, Q., Ferrandiz, C., Yanofsky, M.F. et al. Development, 125 (1998),pp. 1509-1517
    [33]
    He, X., Zhang, J. Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution Genetics, 169 (2005),pp. 1157-1164
    [34]
    Irish, V.F. Duplication, diversification, and comparative genetics of angiosperm MADS-box genes Adv. Bot. Res., 44 (2006),pp. 129-161
    [35]
    Irish, V.F., Sussex, I.M. Plant Cell, 2 (1990),pp. 741-753
    [36]
    Jiao, Y., Wickett, N.J., Ayyampalayam, S. et al. Ancestral polyploidy in seed plants and angiosperms Nature, 473 (2011),pp. 97-100
    [37]
    Johanson, U., West, J., Lister, C. et al. Science, 290 (2000),pp. 344-347
    [38]
    Kang, I.H., Steffen, J.G., Portereiko, M.F. et al. Plant Cell, 20 (2008),pp. 635-647
    [39]
    Kaufmann, K., Muino, J.M., Jauregui, R. et al. PLoS Biol., 7 (2009),p. e1000090
    [40]
    Kaufmann, K., Wellmer, F., Muino, J.M. et al. Orchestration of floral initiation by APETALA1 Science, 328 (2010),pp. 85-89
    [41]
    Kempin, S.A., Savidge, B., Yanofsky, M.F. Science, 267 (1995),pp. 522-525
    [42]
    Kieffer, M., Master, V., Waites, R. et al. Plant J., 68 (2011),pp. 147-158
    [43]
    Kim, S., Yoo, M.J., Albert, V.A. et al. Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication Am. J. Bot., 91 (2004),pp. 2102-2118
    [44]
    Kohler, C., Hennig, L., Spillane, C. et al. Genes Dev., 17 (2003),pp. 1540-1553
    [45]
    Kramer, E.M., Dorit, R.L., Irish, V.F. Genetics, 149 (1998),pp. 765-783
    [46]
    Kramer, E.M., Jaramillo, M.A., Di Stilio, V.S. Genetics, 166 (2004),pp. 1011-1023
    [47]
    Kramer, E.M., Su, H.J., Wu, C.C. et al. BMC Evol. Biol., 6 (2006),p. 30
    [48]
    Liljegren, S.J., Ditta, G.S., Eshed, Y. et al. Nature, 404 (2000),pp. 766-770
    [49]
    Lynch, M., Conery, J.S. The evolutionary fate and consequences of duplicate genes Science, 290 (2000),pp. 1151-1155
    [50]
    Maere, S., De Bodt, S., Raes, J. et al. Modeling gene and genome duplications in eukaryotes Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 5454-5459
    [51]
    Melzer, R., Verelst, W., Theissen, G. Nucleic Acids Res., 37 (2009),pp. 144-157
    [52]
    Mondragon-Palomino, M., Trontin, C. High time for a roll call: gene duplication and phylogenetic relationships of TCP-like genes in monocots Ann. Bot, 107 (2011),pp. 1533-1544
    [53]
    Mondragon-Palomino, M., Theissen, G. Plant J., 66 (2011),pp. 1008-1019
    [54]
    Moore, R.C., Grant, S.R., Purugganan, M.D. Mol. Biol. Evol., 22 (2005),pp. 91-103
    [55]
    Nam, J., Kim, J., Lee, S. et al. Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 1910-1915
    [56]
    Ohno, S.
    [57]
    Parenicova, L., de Folter, S., Kieffer, M. et al. Plant Cell, 15 (2003),pp. 1538-1551
    [58]
    Pelaz, S., Ditta, G.S., Baumann, E. et al. Nature, 405 (2000),pp. 200-203
    [59]
    Pinyopich, A., Ditta, G.S., Savidge, B. et al. Assessing the redundancy of MADS-box genes during carpel and ovule development Nature, 424 (2003),pp. 85-88
    [60]
    Portereiko, M.F., Lloyd, A., Steffen, J.G. et al. Plant Cell, 18 (2006),pp. 1862-1872
    [61]
    Proost, S., Pattyn, P., Gerats, T. et al. Journey through the past: 150 million years of plant genome evolution Plant J., 66 (2011),pp. 58-65
    [62]
    Purugganan, M.D., Rounsley, S.D., Schmidt, R.J. et al. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family Genetics, 140 (1995),pp. 345-356
    [63]
    Rijpkema, A.S., Royaert, S., Zethof, J. et al. Plant Cell, 18 (2006),pp. 1819-1832
    [64]
    Scannell, D.R., Byrne, K.P., Gordon, J.L. et al. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts Nature, 440 (2006),pp. 341-345
    [65]
    Seoighe, C., Gehring, C. Trends Genet., 20 (2004),pp. 461-464
    [66]
    Shan, H., Zhang, N., Liu, C. et al. Mol. Phylogenet. Evol., 44 (2007),pp. 26-41
    [67]
    Shirzadi, R., Andersen, E.D., Bjerkan, K.N. et al. Genome-wide transcript profiling of endosperm without paternal contribution identifies parent-of-origin-dependent regulation of AGAMOUS-LIKE36 PLoS Genet., 7 (2011),p. e1001303
    [68]
    Soltis, D.E., Ma, H., Frohlich, M.W. et al. The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression Trends Plant Sci., 12 (2007),pp. 358-367
    [69]
    Sommer, H., Beltran, J.P., Huijser, P. et al. EMBO J., 9 (1990),pp. 605-613
    [70]
    Steffen, J.G., Kang, I.H., Portereiko, M.F. et al. Plant Physiol., 148 (2008),pp. 259-268
    [71]
    Theissen, G., Kim, J.T., Saedler, H. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes J. Mol. Evol., 43 (1996),pp. 484-516
    [72]
    Tiwari, S., Spielman, M., Schulz, R. et al. BMC Plant Biol., 10 (2010),p. 72
    [73]
    Van de Peer, Y., Maere, S., Meyer, A. The evolutionary significance of ancient genome duplications Nat. Rev. Genet., 10 (2009),pp. 725-732
    [74]
    van der Krol, A.R., Brunelle, A., Tsuchimoto, S. et al. Genes Dev., 7 (1993),pp. 1214-1228
    [75]
    van Dijk, A.D., Morabito, G., Fiers, M. et al. Sequence motifs in MADS transcription factors responsible for specificity and diversification of protein-protein interaction PLoS Comput. Biol., 6 (2010),p. e1001017
    [76]
    Vandenbussche, M., Theissen, G., Van de Peer, Y. et al. Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations Nucleic Acids Res., 31 (2003),pp. 4401-4409
    [77]
    Vandenbussche, M., Zethof, J., Royaert, S. et al. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development Plant Cell, 16 (2004),pp. 741-754
    [78]
    Walia, H., Josefsson, C., Dilkes, B. et al. Dosage-dependent deregulation of an I gene cluster contributes to interspecific incompatibility Curr. Biol., 19 (2009),pp. 1128-1132
    [79]
    Whipple, C.J., Schmidt, R.J.
    [80]
    Yamaguchi, T., Lee, D.Y., Miyao, A. et al. Plant Cell, 18 (2006),pp. 15-28
    [81]
    Yanofsky, M.F., Ma, H., Bowman, J.L. et al. Nature, 346 (1990),pp. 35-39
    [82]
    Zahn, L.M., Kong, H., Leebens-Mack, J.H. et al. Genetics, 169 (2005),pp. 2209-2223
    [83]
    Zahn, L.M., Leebens-Mack, J.H., Arrington, J.M. et al. Evol. Dev., 8 (2006),pp. 30-45
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (77) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return