[1] |
Ahn, S.H., Diaz, R.L., Grunstein, M. et al. Histone H2B deacetylation at lysine 11 is required for yeast apoptosis induced by phosphorylation of H2B at serine 10 Mol. Cell, 24 (2006),pp. 211-220
|
[2] |
Akiyama, T., Nagata, M., Aoki, F. Inadequate histone deacetylation during oocyte meiosis causes aneuploidy and embryo death in mice Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 7339-7344
|
[3] |
Alford, C., Toloubeydokhti, T., Al-Katanani, Y. et al. The expression of microRNA (miRNA) mir-23a and 23b and their target gene, CYP19A1 (aromatase) in follicular cells obtained from women undergoing ART Fertil. Steril., 88 (2007),pp. S166-S167
|
[4] |
Allegrucci, C., Thurston, A., Lucas, E. et al. Epigenetics and the germline Reproduction, 129 (2005),pp. 137-149
|
[5] |
Ancelin, K., Lange, U.C., Hajkova, P. et al. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells Nat. Cell Biol., 8 (2006),pp. 623-630
|
[6] |
Andersen, A.A., Panning, B. Epigenetic gene regulation by noncoding RNAs Curr. Opin. Cell Biol., 15 (2003),pp. 281-289
|
[7] |
Aravin, A., Gaidatzis, D., Pfeffer, S. et al. A novel class of small RNAs bind to MILI protein in mouse testes Nature, 442 (2006),pp. 203-207
|
[8] |
Aravin, A.A., Hannon, G.J., Brennecke, J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race Science, 318 (2007),pp. 761-764
|
[9] |
Aravin, A.A., Sachidanandam, R., Girard, A. et al. Developmentally regulated piRNA clusters implicate MILI in transposon control Science, 316 (2007),pp. 744-747
|
[10] |
Baarends, W.M., Wassenaar, E., Van Der Laan, R. et al. Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis Mol. Cell. Biol., 25 (2005),pp. 1041-1053
|
[11] |
Baldridge, M.G., Stahl, R.L., Gerstenberger, S.L. et al. Modulation of ovarian follicle maturation in Long-Evans rats exposed to polychlorinated biphenyls in utero and lactationally Reprod. Toxicol., 17 (2003),pp. 567-573
|
[12] |
Bao, S., Obata, Y., Carroll, J. et al. Epigenetic modifications necessary for normal development are established during oocyte growth in mice Biol. Reprod., 62 (2000),pp. 616-621
|
[13] |
Bartolomei, M.S., Tilghman, S.M. Genomic imprinting in mammals Annu Rev Genet, 31 (1997),pp. 493-525
|
[14] |
Berger, S.L. Histone modifications in transcriptional regulation Curr. Opin. Genet. Dev., 12 (2002),pp. 142-148
|
[15] |
Biermann, K., Steger, K. Epigenetics in male germ cells J. Androl., 28 (2007),pp. 466-480
|
[16] |
Bonnet, A., Dalbies-Tran, R., Sirard, M.A. Opportunities and challenges in applying genomics to the study of oogenesis and folliculogenesis in farm animals Reproduction, 135 (2008),pp. 119-128
|
[17] |
Bui, H.T., Yamaoka, E., Miyano, T. Involvement of histone H3 (Ser10) phosphorylation in chromosome condensation without Cdc2 kinase and mitogen-activated protein kinase activation in pig oocytes Biol. Reprod., 70 (2004),pp. 1843-1851
|
[18] |
Bui, H.T., Van Thuan, N., Kishigami, S. et al. Regulation of chromatin and chromosome morphology by histone H3 modifications in pig oocytes Reproduction, 133 (2007),pp. 371-382
|
[19] |
Carmona-Gutierrez, D., Madeo, F. Yeast unravels epigenetic apoptosis control: deadly chat within a histone tail Mol. Cell, 24 (2006),pp. 167-169
|
[20] |
Cecconi, S., Ciccarelli, C., Barberi, M. et al. Granulosa cell-oocyte interactions Eur. J. Obstet. Gynecol. Reprod. Biol., 115 (2004),pp. S19-S22
|
[21] |
Chang, C.C., Nagy, Z.P., Abdelmassih, R. et al. Genome-wide epigenetic changes during oocyte growth Fertil. Steril., 82 (2004)
|
[22] |
Clough, E., Moon, W., Wang, S. et al. Development, 134 (2007),pp. 157-165
|
[23] |
Costa, F.F. Non-coding RNAs: new players in eukaryotic biology Gene, 357 (2005),pp. 83-94
|
[24] |
Costa, F.F. Non-coding RNAs, epigenetics and complexity Gene, 410 (2008),pp. 9-17
|
[25] |
Craig, J., Orisaka, M., Wang, H. et al. Gonadotropin and intra-ovarian signals regulating follicle development and atresia: the delicate balance between life and death Front. Biosci., 12 (2007),pp. 3628-3639
|
[26] |
De La Fuente, R., Baumann, C., Fan, T. et al. Lsh is required for meiotic chromosome synapsis and retrotransposon silencing in female germ cells Nat. Cell Biol., 8 (2006),pp. 1448-1454
|
[27] |
Deng, W., Lin, H. Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis Dev. Cell, 2 (2002),pp. 819-830
|
[28] |
Endo, T., Naito, K., Aoki, F. et al. Mol. Reprod. Dev., 71 (2005),pp. 123-128
|
[29] |
Fiedler, S.D., Carletti, M.Z., Hong, X. et al. Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells Biol. Reprod., 79 (2008),pp. 1030-1037
|
[30] |
Fischle, W., Wang, Y., Allis, C.D. Histone and chromatin cross-talk Curr. Opin. Cell Biol., 15 (2003),pp. 172-183
|
[31] |
Fortune, J.E. The early stages of follicular development: activation of primordial follicles and growth of preantral follicles Anim. Reprod. Sci., 78 (2003),pp. 135-163
|
[32] |
Geuns, E., De Rycke, M., Van Steirteghem, A. et al. Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos Hum. Mol. Genet., 12 (2003),pp. 2873-2879
|
[33] |
Girard, A., Sachidanandam, R., Hannon, G.J. et al. A germline-specific class of small RNAs binds mammalian Piwi proteins Nature, 442 (2006),pp. 199-202
|
[34] |
Grivna, S.T., Beyret, E., Wang, Z. et al. A novel class of small RNAs in mouse spermatogenic cells Genes Dev., 20 (2006),pp. 1709-1714
|
[35] |
Gu, L., Wang, Q., Wang, C.M. et al. Distribution and expression of phosphorylated histone H3 during porcine oocyte maturation Mol. Reprod. Dev., 75 (2008),pp. 143-149
|
[36] |
Hajkova, P., Erhardt, S., Lane, N. et al. Epigenetic reprogramming in mouse primordial germ cells Mech. Dev., 117 (2002),pp. 15-23
|
[37] |
Hajkova, P., Ancelin, K., Waldmann, T. et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line Nature, 452 (2008),pp. 877-881
|
[38] |
Hayashi, K., Yoshida, K., Matsui, Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase Nature, 438 (2005),pp. 374-378
|
[39] |
Hayashi, K., Chuva de Sousa Lopes, S.M., Kaneda, M. et al. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis PLoS ONE, 3 (2008),p. e1738
|
[40] |
Hiura, H., Obata, Y., Komiyama, J. et al. Oocyte growth-dependent progression of maternal imprinting in mice Genes Cells, 11 (2006),pp. 353-361
|
[41] |
Hou, J., Liu, L., Zhang, J. et al. Epigenetic modification of histone 3 at lysine 9 in sheep zygotes and its relationship with DNA methylation BMC Dev. Biol., 8 (2008),p. 60
|
[42] |
Jelinkova, L., Kubelka, M. Neither aurora B activity nor histone H3 phosphorylation is essential for chromosome condensation during meiotic maturation of porcine oocytes Biol. Reprod., 74 (2006),pp. 905-912
|
[43] |
Jenuwein, T., Allis, C.D. Translating the histone code Science, 293 (2001),pp. 1074-1079
|
[44] |
Kageyama, S., Liu, H., Kaneko, N. et al. Alterations in epigenetic modifications during oocyte growth in mice Reproduction, 133 (2007),pp. 85-94
|
[45] |
Kaipia, A., Hsueh, A.J.W. Regulation of ovarian follicle atresia Annu. Rev. Physiol., 59 (1997),pp. 349-363
|
[46] |
Kaneda, M., Okano, M., Hata, K. et al. Nature, 429 (2004),pp. 900-903
|
[47] |
Kato, M., Miura, A., Bender, J. et al. Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis Curr. Biol., 13 (2003),pp. 421-426
|
[48] |
Kato, Y., Kaneda, M., Hata, K. et al. Hum. Mol. Genet., 16 (2007),pp. 2272-2280
|
[49] |
Kelly, T.L.J., Trasler, J.M. Reproductive epigenetics Clin. Genet., 65 (2004),pp. 247-260
|
[50] |
Khan, A.U., Krishnamurthy, S. Histone modifications as key regulators of transcription Front. Biosci., 10 (2005),pp. 866-872
|
[51] |
Kim, J.M., Liu, H., Tazaki, M. et al. Changes in histone acetylation during mouse oocyte meiosis J. Cell Biol., 162 (2003),pp. 37-46
|
[52] |
Kim, Y.J., Ku, S.Y., Rosenwaks, Z. et al. Reprod. Sci., 17 (2010),pp. 1081-1089
|
[53] |
Kimmins, S., Sassone-Corsi, P. Chromatin remodelling and epigenetic features of germ cells Nature, 434 (2005),pp. 583-589
|
[54] |
Koerner, M.V., Pauler, F.M., Huang, R. et al. The function of non-coding RNAs in genomic imprinting Development, 136 (2009),pp. 1771-1783
|
[55] |
La Salle, S., Mertineit, C., Taketo, T. et al. Windows for sex-specific methylation marked by DNA methyltransferase expression profiles in mouse germ cells Dev. Biol., 268 (2004),pp. 403-415
|
[56] |
Lane, N., Dean, W., Erhardt, S. et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse Genesis, 35 (2003),pp. 88-93
|
[57] |
LaVoie, H.A. Epigenetic control of ovarian function: the emerging role of histone modifications Mol. Cell. Endocrinol., 243 (2005),pp. 12-18
|
[58] |
Lees-Murdock, D.J., De Felici, M., Walsh, C.P. Methylation dynamics of repetitive DNA elements in the mouse germ cell lineage Genomics, 82 (2003),pp. 230-237
|
[59] |
Li, E., Beard, C., Jaenisch, R. Role for DNA methylation in genomic imprinting Nature, 366 (1993),pp. 362-365
|
[60] |
Liu, H., Kim, J.M., Aoki, F. Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos Development, 131 (2004),pp. 2269-2280
|
[61] |
Lonczak, A., Tao, X., Miller, K. et al. Dynamics of the human oocyte microRNA transcriptome during maturation Fertil. Steril., 92 (2009)
|
[62] |
Lucifero, D., Mann, M.R., Bartolomei, M.S. et al. Gene-specific timing and epigenetic memory in oocyte imprinting Hum. Mol. Genet., 13 (2004),pp. 839-849
|
[63] |
Maatouk, D.M., Kellam, L.D., Mann, M.R.W. et al. DNA methylation is a primary mechanism for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages Development, 133 (2006),pp. 3411-3418
|
[64] |
Marchal, R., Chicheportiche, A., Dutrillaux, B. et al. DNA methylation in mouse gametogenesis Cytogenet. Genome Res., 105 (2004),pp. 316-324
|
[65] |
Mattick, J.S., Makunin, I.V. Non-coding RNA Hum. Mol. Genet., 15 (2006),pp. R17-R29
|
[66] |
McGraw, S., Morin, G., Vigneault, C. et al. Investigation of MYST4 histone acetyltransferase and its involvement in mammalian gametogenesis BMC Dev. Biol., 7 (2007),p. 123
|
[67] |
Mehlmann, L.M. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation Reproduction, 130 (2005),pp. 791-799
|
[68] |
Monk, M., Boubelik, M., Lehnert, S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development Development, 99 (1987),p. 371
|
[69] |
Morgan, H.D., Santos, F., Green, K. et al. Epigenetic reprogramming in mammals Hum. Mol. Genet., 14 (2005),pp. 47-58
|
[70] |
Morita, Y., Tilly, J.L. Oocyte apoptosis: like sand through an hourglass Dev. Biol., 213 (1999),pp. 1-17
|
[71] |
Obata, Y., Kono, T. Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth J. Biol. Chem., 277 (2002),pp. 5285-5289
|
[72] |
Pépin, D., Vanderhyden, B.C., Picketts, D.J. et al. ISWI chromatin remodeling in ovarian somatic and germ cells: revenge of the NURFs Trends Endocrin. Met, 18 (2007),pp. 215-224
|
[73] |
Petkov, S.G., Reh, W.A., Anderson, G.B. Methylation changes in porcine primordial germ cells Mol. Reprod. Dev., 76 (2008),pp. 22-30
|
[74] |
Qiao, J., Chen, Y., Yan, L.Y. et al. Histone methylation pattern in human oocytes and developing embryos Fertil. Steril., 90 (2008)
|
[75] |
Qiao, J., Chen, Y., Yan, L.Y. et al. Changes in histone methylation during human oocyte maturation and IVF- or ICSI-derived embryo development Fertil. Steril., 93 (2010),pp. 1628-1636
|
[76] |
Racedo, S.E., Wrenzycki, C., Lepikhov, K. et al. Reprod. Fertil. Dev., 21 (2009),pp. 738-748
|
[77] |
Reynaud, C., Bruno, C., Boullanger, P. et al. Monitoring of urinary excretion of modified nucleosides in cancer patients using a set of six monoclonal antibodies Cancer Lett., 61 (1992),pp. 255-262
|
[78] |
Ro, S., Song, R., Park, C. et al. Cloning and expression profiling of small RNAs expressed in the mouse ovary RNA, 13 (2007),pp. 2366-2380
|
[79] |
Rodrigues, P., Limback, D., McGinnis, L.K. et al. Oogenesis: prospects and challenges for the future J. Cell. Physiol., 216 (2008),pp. 355-365
|
[80] |
Ruiz-Cortes, Z.T., Kimmins, S., Monaco, L. et al. Estrogen mediates phosphorylation of histone H3 in ovarian follicle and mammary epithelial tumor cells via the mitotic kinase, Aurora B Mol. Endocrinol, 19 (2005),pp. 2991-3000
|
[81] |
Salvador, L.M., Park, Y., Cottom, J. et al. Follicle-stimulating hormone stimulates protein kinase A-mediated histone H3 phosphorylation and acetylation leading to select gene activation in ovarian granulosa cells J. Biol. Chem., 276 (2001),pp. 40146-40150
|
[82] |
Santenard, A., Torres-Padilla, M.E. Epigenetic reprogramming in mammalian reproduction: contribution from histone variants Epigenetics, 4 (2009),pp. 80-84
|
[83] |
Santos, F., Dean, W. Epigenetic reprogramming during early development in mammals Reproduction, 127 (2004),pp. 643-651
|
[84] |
Sato, S., Yoshimizu, T., Sato, E. et al. Erasure of methylation imprinting of Igf2r during mouse primordial germ-cell development Mol. Reprod. Dev., 65 (2003),pp. 41-50
|
[85] |
Seki, Y., Hayashi, K., Itoh, K. et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice Dev. Biol., 278 (2005),pp. 440-458
|
[86] |
Seki, Y., Yamaji, M., Yabuta, Y. et al. Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice Development, 134 (2007),pp. 2627-2638
|
[87] |
Seneda, M.M., Godmann, M., Murphy, B.D. et al. Developmental regulation of histone H3 methylation at lysine 4 in the porcine ovary Reproduction, 135 (2008),pp. 829-838
|
[88] |
Surani, M.A. Reprogramming of genome function through epigenetic inheritance Nature, 414 (2001),pp. 122-128
|
[89] |
Swain, J.E., Ding, J., Brautigan, D.L. et al. Proper chromatin condensation and maintenance of histone H3 phosphorylation during mouse oocyte meiosis requires protein phosphatase activity Biol. Reprod., 76 (2007),pp. 628-638
|
[90] |
Swales, A.K.E., Spears, N. Genomic imprinting and reproduction Reproduction, 130 (2005),pp. 389-399
|
[91] |
Tachibana, M., Nozaki, M., Takeda, N. et al. Functional dynamics of H3K9 methylation during meiotic prophase progression EMBO J., 26 (2007),pp. 3346-3359
|
[92] |
Tam, O.H., Aravin, A.A., Stein, P. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes Nature, 453 (2008),pp. 534-538
|
[93] |
Tang, F., Kaneda, M., O'Carroll, D. et al. Maternal microRNAs are essential for mouse zygotic development Genes Dev., 21 (2007),pp. 644-650
|
[94] |
Tang, L.S., Wang, Q., Xiong, B. et al. Dynamic changes in histone acetylation during sheep oocyte maturation J. Reprod. Dev., 53 (2007),pp. 555-561
|
[95] |
Thomas, F.H., Vanderhyden, B.C. Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth Reprod. Biol. Endocrinol., 4 (2006),p. 19
|
[96] |
Toloubeydokhti, T., Alford, C., Al-Katanani, Y. et al. The expression of microRNA (miRNA), mir-17, mir-211 and mir-542 and their target genes, StAR, IL-1b and Cox2 in follicular cells derived from women undergoing ART Fertil. Steril., 88 (2007),pp. S165-S166
|
[97] |
Vanselow, J., Furbass, R. Epigenetic control of folliculogenesis and luteinization Anim. Reprod. Sci., 7 (2010),pp. 134-139
|
[98] |
Wang, Q., Yin, S., Ai, J.S. et al. Histone deacetylation is required for orderly meiosis Cell Cycle, 5 (2006),pp. 766-774
|
[99] |
Wang, Z., Zang, C., Cui, K. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes Cell, 138 (2009),pp. 1019-1031
|
[100] |
Watanabe, T., Takeda, A., Tsukiyama, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes Genes Dev., 20 (2006),pp. 1732-1743
|
[101] |
Watanabe, T., Totoki, Y., Toyoda, A. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes Nature, 453 (2008),pp. 539-543
|
[102] |
Yamazaki, Y., Mann, M.R.W., Lee, S.S. et al. Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 12207-12212
|
[103] |
Zhao, H., Rajkovic, A. MicroRNAs and mammalian ovarian development Semin. Reprod. Med., 26 (2008),pp. 461-468
|