5.9
CiteScore
5.9
Impact Factor
Volume 39 Issue 1
Jan.  2012
Turn off MathJax
Article Contents

MicroRNAs and Type 2 Diabetes/Obesity

doi: 10.1016/j.jgg.2011.11.007
More Information
  • Corresponding author: E-mail address: huangqy@mail.ccnu.edu.cn (Qingyang Huang)
  • Received Date: 2011-07-16
  • Accepted Date: 2011-11-15
  • Rev Recd Date: 2011-11-06
  • Available Online: 2011-12-29
  • Publish Date: 2012-01-20
  • MicroRNAs belong to a newly identified class of small non-coding RNAs that have been widely implicated in the fine-tuning of many physiological processes such as the pathogenesis of type 2 diabetes (T2D) and obesity. Microarray studies have highlighted an altered profile of miRNA expression in insulin target tissues in diabetic and obese models. Emerging evidences suggest that miRNAs play significant roles in insulin production, secretion and actions, as well as in diverse aspects of glucose homeostasis and adipocyte differentiation. The identification of tissue-specific miRNAs implicated in T2D and obesity might be useful for the future development of effective strategies for early diagnosis and therapeutic intervention of obesity-related medical complications.
  • loading
  • [1]
    Baek, D., Villén, J., Shin, C. et al. The impact of microRNAs on protein output Nature, 455 (2008),pp. 64-71
    [2]
    Balasubramanyam, M., Aravind, S., Gokulakrishnan, K. et al. Impaired miR-146a expression links subclinical inflammation and insulin resistance in type 2 diabetes Mol. Cell Biochem., 351 (2011),pp. 197-205
    [3]
    Baroukh, N., Ravier, M.A., Loder, M.K. et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic β-cell lines J. Biol. Chem., 282 (2007),pp. 19575-19588
    [4]
    Bravo-Egana, V., Rosero, S., Molano, R.D. et al. Quantitative differential expression analysis reveals miR-7 as major islet microRNA Biochem. Biophys. Res. Commun., 366 (2008),pp. 922-926
    [5]
    Carè, A., Catalucci, D., Felicetti, F. et al. MicroRNA-133 controls cardiac hypertrophy Nat. Med., 13 (2007),pp. 613-618
    [6]
    Chen, J.F., Mandel, E.M., Thomson, J.M. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation Nat. Genet., 38 (2006),pp. 228-233
    [7]
    Correa-Medina, M., Bravo-Egana, V., Rosero, S. et al. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas Gene Expr. Patterns, 9 (2009),pp. 193-199
    [8]
    Dávalos, A., Goedeke, L., Smibert, P. et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 9232-9237
    [9]
    Du, B., Ma, L.M., Huang, M.B. et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells FEBS Lett., 584 (2010),pp. 811-816
    [10]
    El Ouaamari, A., Baroukh, N., Martens, G.A. et al. miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic β-cells Diabetes, 57 (2008),pp. 2708-2717
    [11]
    Esau, C., Kang, X., Peralta, E. et al. MicroRNA-143 regulates adipocyte differentiation J. Biol. Chem., 279 (2004),pp. 52361-52365
    [12]
    Esguerra, J.L., Bolmeson, C., Cilio, C.M. et al. Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat PLoS ONE, 6 (2011),p. e18613
    [13]
    Fred, R.G., Bang-Berthelsen, C.H., Mandrup-Poulsen, T. et al. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression PLoS ONE, 5 (2010),p. e10843
    [14]
    Fu, Y., Zhang, Y., Wang, Z. et al. Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy Am. J. Nephrol., 32 (2010),pp. 581-589
    [15]
    Granjon, A., Gustin, M.P., Rieusset, J. et al. The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway Diabetes, 58 (2009),pp. 2555-2564
    [16]
    He, A., Zhu, L., Gupta, N. et al. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes Mol. Endocrinol., 21 (2007),pp. 2785-2794
    [17]
    Heneghan, H.M., Miller, N., McAnena, O.J. et al. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers J. Clin. Endocrinol. Metab., 96 (2011),pp. E846-E850
    [18]
    Hennessy, E., Clynes, M., Jeppesen, P.B. et al. Identification of microRNAs with a role in glucose stimulated insulin secretion by expression profiling of MIN6 cells Biochem. Biophys. Res. Commun., 396 (2010),pp. 457-462
    [19]
    Herrera, B.M., Lockstone, H.E., Taylor, J.M. et al. MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of type 2 diabetes BMC Med. Genomics, 2 (2009),p. 54
    [20]
    Herrera, B.M., Lockstone, H.E., Taylor, J.M. et al. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes Diabetologia, 53 (2010),pp. 1099-1109
    [21]
    Huang, B., Qin, W., Zhao, B. et al. MicroRNA expression profiling in diabetic GK rat model Acta Biochim. Biophys. Sin., 41 (2009),pp. 472-477
    [22]
    Joglekar, M.V., Parekh, V.S., Mehta, S. et al. MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3 Dev. Biol., 311 (2007),pp. 603-612
    [23]
    Joglekar, M.V., Joglekar, V.M., Hardikar, A.A. Expression of islet-specific microRNAs during human pancreatic development Gene Expr. Patterns, 9 (2009),pp. 109-113
    [24]
    Jordan, S.D., Krüger, M., Willmes, D.M. et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism Nat. Cell Biol., 13 (2011),pp. 434-446
    [25]
    Kajimoto, K., Naraba, H., Iwai, N. MicroRNA and 3T3-L1 pre-adipocyte differentiation RNA, 12 (2006),pp. 1626-1632
    [26]
    Karbiener, M., Fischer, C., Nowitsch, S. et al. MicroRNA miR-27b impairs human adipocyte differentiation and targets PPARγ Biochem. Biophys. Res. Commun., 390 (2009),pp. 247-251
    [27]
    Karbiener, M., Neuhold, C., Opriessnig, P. et al. MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2 RNA Biol., 8 (2011),pp. 850-860
    [28]
    Karolina, D.S., Armugam, A., Tavintharan, S. et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus PLoS ONE, 6 (2011),p. e22839
    [29]
    Kato, M., Zhang, J., Wang, M. et al. Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 3432-3437
    [30]
    Kato, M., Wang, L., Putta, S. et al. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-β-induced collagen expression in kidney cells J. Biol. Chem., 285 (2010),pp. 34004-34015
    [31]
    Kato, M., Putta, S., Wang, M. et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN Nat. Cell Biol., 11 (2009),pp. 881-889
    [32]
    Keller, P., Gburcik, V., Petrovic, N. et al. Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity BMC Endocr. Disord., 11 (2011),p. 7
    [33]
    Kennell, J.A., Gerin, I., MacDougald, O.A. et al. The microRNA miR-8 is a conserved negative regulator of Wnt signaling Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 15417-15422
    [34]
    Kim, Y.J., Hwang, S.J., Bae, Y.C. et al. miR-21 regulates adipogenic differentiation through the modulation of TGF-β signaling in mesenchymal stem cells derived from human adipose tissue Stem Cells, 27 (2009),pp. 3093-3102
    [35]
    Kim, S.Y., Kim, A.Y., Lee, H.W. et al. Biochem. Biophys. Res. Commun., 392 (2010),pp. 323-328
    [36]
    Kim, Y.J., Hwang, S.H., Cho, H.H. et al. MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues J. Cell Physiol., 227 (2012),pp. 183-193
    [37]
    Klöting, N., Berthold, S., Kovacs, P. et al. MicroRNA expression in human omental and subcutaneous adipose tissue PLoS ONE, 4 (2009),p. e4699
    [38]
    Kloosterman, W.P., Lagendijk, A.K., Ketting, R.F. et al. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development PLoS Biol., 5 (2007),p. e203
    [39]
    Kong, L., Zhu, J., Han, W. et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study Acta Diabetol., 48 (2011),pp. 61-69
    [40]
    Krek, A., Grün, D., Poy, M.N. et al. Combinatorial microRNA target predictions Nat. Genet., 37 (2005),pp. 495-500
    [41]
    Krupa, A., Jenkins, R., Luo, D.D. et al. Loss of microRNA-192 promotes fibrogenesis in diabetic nephropathy J. Am. Soc. Nephrol., 21 (2010),pp. 438-447
    [42]
    Lee, E.K., Lee, M.J., Abdelmohsen, K. et al. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression Mol. Cell. Biol., 31 (2011),pp. 626-638
    [43]
    Lewis, B.P., Burge, C.B., Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets Cell, 120 (2005),pp. 15-20
    [44]
    Li, Y., Xu, X., Liang, Y. et al. miR-375 enhances palmitate-induced lipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin (V1) protein expression Int. J. Clin. Exp. Pathol., 3 (2010),pp. 254-264
    [45]
    Lim, L.P., Lau, N.C., Garrett-Engele, P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs Nature, 433 (2005),pp. 769-773
    [46]
    Lin, Q., Gao, Z., Alarcon, R.M. et al. A role of miR-27 in the regulation of adipogenesis FEBS J., 276 (2009),pp. 2348-2358
    [47]
    Ling, H.Y., Wen, G.B., Feng, S.D. et al. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling Clin. Exp. Pharmacol. Physiol., 38 (2011),pp. 239-246
    [48]
    Long, J., Wang, Y., Wang, W. et al. J. Biol. Chem., 286 (2011),pp. 11837-11848
    [49]
    Long, J., Wang, Y., Wang, W. et al. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions J. Biol. Chem., 285 (2010),pp. 23457-23465
    [50]
    Lovis, P., Gattesco, S., Regazzi, R. Regulation of the expression of components of the machinery of exocytosis of insulin-secreting cells by microRNAs Biol. Chem., 389 (2008),pp. 305-312
    [51]
    Lovis, P., Roggli, E., Laybutt, D.R. et al. Alterations in microRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction Diabetes, 57 (2008),pp. 2728-2736
    [52]
    Lu, H., Buchan, R.J., Cook, S.A. MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism Cardiovasc. Res., 86 (2010),pp. 410-420
    [53]
    Lv, K., Guo, Y., Zhang, Y. et al. Allele-specific targeting of hsa-miR-657 to human IGF2R creates a potential mechanism underlying the association of ACAA-insertion/deletion polymorphism with type 2 diabetes Biochem. Biophys. Res. Commun., 374 (2008),pp. 101-105
    [54]
    Lynn, F.C., Skewes-Cox, P., Kosaka, Y. et al. MicroRNA expression is required for pancreatic islet cell genesis in the mouse Diabetes, 56 (2007),pp. 2938-2945
    [55]
    Martinelli, R., Nardelli, C., Pilone, V. et al. miR-519d overexpression is associated with human obesity Obesity (Silver Spring), 18 (2010),pp. 2170-2176
    [56]
    Ortega, F.J., Moreno-Navarrete, J.M., Pardo, G. et al. miRNA expression profile of human subcutaneous adipose and during adipocyte differentiation PLoS ONE, 5 (2010),p. e9022
    [57]
    Plaisance, V., Abderrahmani, A., Perret-Menoud, V. et al. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells J. Biol. Chem., 281 (2006),pp. 26932-26942
    [58]
    Poy, M.N., Spranger, M., Stoffel, M. microRNAs and the regulation of glucose and lipid metabolism Diabetes Obes. Metab., 9 (2007),pp. 67-73
    [59]
    Poy, M.N., Eliasson, L., Krutzfeldt, J. et al. A pancreatic islet-specific microRNA regulates insulin secretion Nature, 432 (2004),pp. 226-230
    [60]
    Poy, M.N., Hausser, J., Trajkovski, M. et al. miR-375 maintains normal pancreatic α- and β-cell mass Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 5813-5828
    [61]
    Pullen, T.J., da Silva Xavier, G., Kelsey, G. et al. miR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (Mct1) Mol. Cell. Biol., 31 (2011),pp. 3182-3194
    [62]
    Ramachandran, D., Roy, U., Garg, S. et al. Sirt1 and miR-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets FEBS J., 278 (2011),pp. 1167-1174
    [63]
    Roggli, E., Britan, A., Gattesco, S. et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic β-cells Diabetes, 59 (2010),pp. 978-986
    [64]
    Ryu, H.S., Park, S.Y., Ma, D. et al. The induction of MicroRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes PLoS ONE, 6 (2011),p. e17343
    [65]
    Selbach, M., Schwanhäusser, B., Thierfelder, N. et al. Widespread changes in protein synthesis induced by microRNAs Nature, 455 (2008),pp. 58-63
    [66]
    Shan, Z.X., Lin, Q.X., Deng, C.Y. et al. miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes FEBS Lett., 584 (2010),pp. 3592-3600
    [67]
    Sun, T., Fu, M., Bookout, A.L. et al. MicroRNA let-7 regulates 3T 3-L1 adipogenesis Mol. Endocrinol., 23 (2009),pp. 925-931
    [68]
    Sun, F., Wang, J., Pan, Q. et al. Characterization of function and regulation of miR-24-1 and miR-31 Biochem. Biophys. Res. Commun., 380 (2009),pp. 660-665
    [69]
    Sun, L.L., Jiang, B.G., Li, W.T. et al. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression Diabetes Res. Clin. Pract., 91 (2011),pp. 94-100
    [70]
    Sun, L., Xie, H., Mori, M.A. et al. Mir193b-365 is essential for brown fat differentiation Nat. Cell Biol., 13 (2011),pp. 958-965
    [71]
    Takanabe, R., Ono, K., Abe, Y. et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet Biochem. Biophys. Res. Commun., 376 (2008),pp. 728-732
    [72]
    Tang, X., Muniappan, L., Tang, G. et al. Identification of glucose-regulated miRNAs from pancreatic β cells reveals a role for miR-30d in insulin transcription RNA, 15 (2009),pp. 287-293
    [73]
    Trajkovski, M., Hausser, J., Soutschek, J. et al. MicroRNAs 103 and 107 regulate insulin sensitivity Nature, 474 (2011),pp. 649-653
    [74]
    Wang, Q., Li, Y.C., Wang, J. et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130 Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 2889-2894
    [75]
    Wang, Q., Wang, Y., Minto, A.W. et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy FASEB J., 22 (2008),pp. 4126-4135
    [76]
    Wang, X.H., Qian, R.Z., Zhang, W. et al. MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats Clin. Exp. Pharmacol. Physiol., 36 (2009),pp. 181-188
    [77]
    Xia, H.Q., Pan, Y., Peng, J. et al. Over-expression of miR375 reduces glucose-induced insulin secretion in Nit-1 cells Mol. Biol. Rep., 38 (2011),pp. 3061-3065
    [78]
    Xiao, J., Luo, X., Lin, H. et al. J. Biol. Chem., 282 (2007),pp. 12363-12367
    [79]
    Xie, H., Lim, B., Lodish, H.F. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity Diabetes, 58 (2009),pp. 1050-1057
    [80]
    Xin, X., Chen, S., Khan, Z.A. et al. Akt activation and augmented fibronectin production in hyperhexosemia Am. J. Physiol. Endocrinol. Metab., 293 (2007),pp. E1036-E1044
    [81]
    Yang, B., Lin, H., Xiao, J. et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2 Nat. Med., 13 (2007),pp. 486-491
    [82]
    Zampetaki, A., Kiechl, S., Drozdov, I. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes Circ. Res., 107 (2010),pp. 810-817
    [83]
    Zaragosi, L.E., Wdziekonski, B., Brigand, K.L. et al. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis Genome Biol., 12 (2011),p. R64
    [84]
    Zhang, Z., Peng, H., Chen, J. et al. MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice FEBS Lett., 583 (2009),pp. 2009-2014
    [85]
    Zhao, E., Keller, M.P., Rabaglia, M.E. et al. Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice Mamm. Genome, 20 (2009),pp. 476-485
    [86]
    Zhao, Y., Samal, E., Srivastava, D. Nature, 436 (2005),pp. 214-220
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (74) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return