[1] |
Baek, D., Villén, J., Shin, C. et al. The impact of microRNAs on protein output Nature, 455 (2008),pp. 64-71
|
[2] |
Balasubramanyam, M., Aravind, S., Gokulakrishnan, K. et al. Impaired miR-146a expression links subclinical inflammation and insulin resistance in type 2 diabetes Mol. Cell Biochem., 351 (2011),pp. 197-205
|
[3] |
Baroukh, N., Ravier, M.A., Loder, M.K. et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic β-cell lines J. Biol. Chem., 282 (2007),pp. 19575-19588
|
[4] |
Bravo-Egana, V., Rosero, S., Molano, R.D. et al. Quantitative differential expression analysis reveals miR-7 as major islet microRNA Biochem. Biophys. Res. Commun., 366 (2008),pp. 922-926
|
[5] |
Carè, A., Catalucci, D., Felicetti, F. et al. MicroRNA-133 controls cardiac hypertrophy Nat. Med., 13 (2007),pp. 613-618
|
[6] |
Chen, J.F., Mandel, E.M., Thomson, J.M. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation Nat. Genet., 38 (2006),pp. 228-233
|
[7] |
Correa-Medina, M., Bravo-Egana, V., Rosero, S. et al. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas Gene Expr. Patterns, 9 (2009),pp. 193-199
|
[8] |
Dávalos, A., Goedeke, L., Smibert, P. et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 9232-9237
|
[9] |
Du, B., Ma, L.M., Huang, M.B. et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells FEBS Lett., 584 (2010),pp. 811-816
|
[10] |
El Ouaamari, A., Baroukh, N., Martens, G.A. et al. miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic β-cells Diabetes, 57 (2008),pp. 2708-2717
|
[11] |
Esau, C., Kang, X., Peralta, E. et al. MicroRNA-143 regulates adipocyte differentiation J. Biol. Chem., 279 (2004),pp. 52361-52365
|
[12] |
Esguerra, J.L., Bolmeson, C., Cilio, C.M. et al. Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat PLoS ONE, 6 (2011),p. e18613
|
[13] |
Fred, R.G., Bang-Berthelsen, C.H., Mandrup-Poulsen, T. et al. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression PLoS ONE, 5 (2010),p. e10843
|
[14] |
Fu, Y., Zhang, Y., Wang, Z. et al. Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy Am. J. Nephrol., 32 (2010),pp. 581-589
|
[15] |
Granjon, A., Gustin, M.P., Rieusset, J. et al. The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway Diabetes, 58 (2009),pp. 2555-2564
|
[16] |
He, A., Zhu, L., Gupta, N. et al. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes Mol. Endocrinol., 21 (2007),pp. 2785-2794
|
[17] |
Heneghan, H.M., Miller, N., McAnena, O.J. et al. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers J. Clin. Endocrinol. Metab., 96 (2011),pp. E846-E850
|
[18] |
Hennessy, E., Clynes, M., Jeppesen, P.B. et al. Identification of microRNAs with a role in glucose stimulated insulin secretion by expression profiling of MIN6 cells Biochem. Biophys. Res. Commun., 396 (2010),pp. 457-462
|
[19] |
Herrera, B.M., Lockstone, H.E., Taylor, J.M. et al. MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of type 2 diabetes BMC Med. Genomics, 2 (2009),p. 54
|
[20] |
Herrera, B.M., Lockstone, H.E., Taylor, J.M. et al. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes Diabetologia, 53 (2010),pp. 1099-1109
|
[21] |
Huang, B., Qin, W., Zhao, B. et al. MicroRNA expression profiling in diabetic GK rat model Acta Biochim. Biophys. Sin., 41 (2009),pp. 472-477
|
[22] |
Joglekar, M.V., Parekh, V.S., Mehta, S. et al. MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3 Dev. Biol., 311 (2007),pp. 603-612
|
[23] |
Joglekar, M.V., Joglekar, V.M., Hardikar, A.A. Expression of islet-specific microRNAs during human pancreatic development Gene Expr. Patterns, 9 (2009),pp. 109-113
|
[24] |
Jordan, S.D., Krüger, M., Willmes, D.M. et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism Nat. Cell Biol., 13 (2011),pp. 434-446
|
[25] |
Kajimoto, K., Naraba, H., Iwai, N. MicroRNA and 3T3-L1 pre-adipocyte differentiation RNA, 12 (2006),pp. 1626-1632
|
[26] |
Karbiener, M., Fischer, C., Nowitsch, S. et al. MicroRNA miR-27b impairs human adipocyte differentiation and targets PPARγ Biochem. Biophys. Res. Commun., 390 (2009),pp. 247-251
|
[27] |
Karbiener, M., Neuhold, C., Opriessnig, P. et al. MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2 RNA Biol., 8 (2011),pp. 850-860
|
[28] |
Karolina, D.S., Armugam, A., Tavintharan, S. et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus PLoS ONE, 6 (2011),p. e22839
|
[29] |
Kato, M., Zhang, J., Wang, M. et al. Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 3432-3437
|
[30] |
Kato, M., Wang, L., Putta, S. et al. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-β-induced collagen expression in kidney cells J. Biol. Chem., 285 (2010),pp. 34004-34015
|
[31] |
Kato, M., Putta, S., Wang, M. et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN Nat. Cell Biol., 11 (2009),pp. 881-889
|
[32] |
Keller, P., Gburcik, V., Petrovic, N. et al. Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity BMC Endocr. Disord., 11 (2011),p. 7
|
[33] |
Kennell, J.A., Gerin, I., MacDougald, O.A. et al. The microRNA miR-8 is a conserved negative regulator of Wnt signaling Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 15417-15422
|
[34] |
Kim, Y.J., Hwang, S.J., Bae, Y.C. et al. miR-21 regulates adipogenic differentiation through the modulation of TGF-β signaling in mesenchymal stem cells derived from human adipose tissue Stem Cells, 27 (2009),pp. 3093-3102
|
[35] |
Kim, S.Y., Kim, A.Y., Lee, H.W. et al. Biochem. Biophys. Res. Commun., 392 (2010),pp. 323-328
|
[36] |
Kim, Y.J., Hwang, S.H., Cho, H.H. et al. MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues J. Cell Physiol., 227 (2012),pp. 183-193
|
[37] |
Klöting, N., Berthold, S., Kovacs, P. et al. MicroRNA expression in human omental and subcutaneous adipose tissue PLoS ONE, 4 (2009),p. e4699
|
[38] |
Kloosterman, W.P., Lagendijk, A.K., Ketting, R.F. et al. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development PLoS Biol., 5 (2007),p. e203
|
[39] |
Kong, L., Zhu, J., Han, W. et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study Acta Diabetol., 48 (2011),pp. 61-69
|
[40] |
Krek, A., Grün, D., Poy, M.N. et al. Combinatorial microRNA target predictions Nat. Genet., 37 (2005),pp. 495-500
|
[41] |
Krupa, A., Jenkins, R., Luo, D.D. et al. Loss of microRNA-192 promotes fibrogenesis in diabetic nephropathy J. Am. Soc. Nephrol., 21 (2010),pp. 438-447
|
[42] |
Lee, E.K., Lee, M.J., Abdelmohsen, K. et al. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression Mol. Cell. Biol., 31 (2011),pp. 626-638
|
[43] |
Lewis, B.P., Burge, C.B., Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets Cell, 120 (2005),pp. 15-20
|
[44] |
Li, Y., Xu, X., Liang, Y. et al. miR-375 enhances palmitate-induced lipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin (V1) protein expression Int. J. Clin. Exp. Pathol., 3 (2010),pp. 254-264
|
[45] |
Lim, L.P., Lau, N.C., Garrett-Engele, P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs Nature, 433 (2005),pp. 769-773
|
[46] |
Lin, Q., Gao, Z., Alarcon, R.M. et al. A role of miR-27 in the regulation of adipogenesis FEBS J., 276 (2009),pp. 2348-2358
|
[47] |
Ling, H.Y., Wen, G.B., Feng, S.D. et al. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling Clin. Exp. Pharmacol. Physiol., 38 (2011),pp. 239-246
|
[48] |
Long, J., Wang, Y., Wang, W. et al. J. Biol. Chem., 286 (2011),pp. 11837-11848
|
[49] |
Long, J., Wang, Y., Wang, W. et al. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions J. Biol. Chem., 285 (2010),pp. 23457-23465
|
[50] |
Lovis, P., Gattesco, S., Regazzi, R. Regulation of the expression of components of the machinery of exocytosis of insulin-secreting cells by microRNAs Biol. Chem., 389 (2008),pp. 305-312
|
[51] |
Lovis, P., Roggli, E., Laybutt, D.R. et al. Alterations in microRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction Diabetes, 57 (2008),pp. 2728-2736
|
[52] |
Lu, H., Buchan, R.J., Cook, S.A. MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism Cardiovasc. Res., 86 (2010),pp. 410-420
|
[53] |
Lv, K., Guo, Y., Zhang, Y. et al. Allele-specific targeting of hsa-miR-657 to human IGF2R creates a potential mechanism underlying the association of ACAA-insertion/deletion polymorphism with type 2 diabetes Biochem. Biophys. Res. Commun., 374 (2008),pp. 101-105
|
[54] |
Lynn, F.C., Skewes-Cox, P., Kosaka, Y. et al. MicroRNA expression is required for pancreatic islet cell genesis in the mouse Diabetes, 56 (2007),pp. 2938-2945
|
[55] |
Martinelli, R., Nardelli, C., Pilone, V. et al. miR-519d overexpression is associated with human obesity Obesity (Silver Spring), 18 (2010),pp. 2170-2176
|
[56] |
Ortega, F.J., Moreno-Navarrete, J.M., Pardo, G. et al. miRNA expression profile of human subcutaneous adipose and during adipocyte differentiation PLoS ONE, 5 (2010),p. e9022
|
[57] |
Plaisance, V., Abderrahmani, A., Perret-Menoud, V. et al. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells J. Biol. Chem., 281 (2006),pp. 26932-26942
|
[58] |
Poy, M.N., Spranger, M., Stoffel, M. microRNAs and the regulation of glucose and lipid metabolism Diabetes Obes. Metab., 9 (2007),pp. 67-73
|
[59] |
Poy, M.N., Eliasson, L., Krutzfeldt, J. et al. A pancreatic islet-specific microRNA regulates insulin secretion Nature, 432 (2004),pp. 226-230
|
[60] |
Poy, M.N., Hausser, J., Trajkovski, M. et al. miR-375 maintains normal pancreatic α- and β-cell mass Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 5813-5828
|
[61] |
Pullen, T.J., da Silva Xavier, G., Kelsey, G. et al. miR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (Mct1) Mol. Cell. Biol., 31 (2011),pp. 3182-3194
|
[62] |
Ramachandran, D., Roy, U., Garg, S. et al. Sirt1 and miR-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets FEBS J., 278 (2011),pp. 1167-1174
|
[63] |
Roggli, E., Britan, A., Gattesco, S. et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic β-cells Diabetes, 59 (2010),pp. 978-986
|
[64] |
Ryu, H.S., Park, S.Y., Ma, D. et al. The induction of MicroRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes PLoS ONE, 6 (2011),p. e17343
|
[65] |
Selbach, M., Schwanhäusser, B., Thierfelder, N. et al. Widespread changes in protein synthesis induced by microRNAs Nature, 455 (2008),pp. 58-63
|
[66] |
Shan, Z.X., Lin, Q.X., Deng, C.Y. et al. miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes FEBS Lett., 584 (2010),pp. 3592-3600
|
[67] |
Sun, T., Fu, M., Bookout, A.L. et al. MicroRNA let-7 regulates 3T 3-L1 adipogenesis Mol. Endocrinol., 23 (2009),pp. 925-931
|
[68] |
Sun, F., Wang, J., Pan, Q. et al. Characterization of function and regulation of miR-24-1 and miR-31 Biochem. Biophys. Res. Commun., 380 (2009),pp. 660-665
|
[69] |
Sun, L.L., Jiang, B.G., Li, W.T. et al. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression Diabetes Res. Clin. Pract., 91 (2011),pp. 94-100
|
[70] |
Sun, L., Xie, H., Mori, M.A. et al. Mir193b-365 is essential for brown fat differentiation Nat. Cell Biol., 13 (2011),pp. 958-965
|
[71] |
Takanabe, R., Ono, K., Abe, Y. et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet Biochem. Biophys. Res. Commun., 376 (2008),pp. 728-732
|
[72] |
Tang, X., Muniappan, L., Tang, G. et al. Identification of glucose-regulated miRNAs from pancreatic β cells reveals a role for miR-30d in insulin transcription RNA, 15 (2009),pp. 287-293
|
[73] |
Trajkovski, M., Hausser, J., Soutschek, J. et al. MicroRNAs 103 and 107 regulate insulin sensitivity Nature, 474 (2011),pp. 649-653
|
[74] |
Wang, Q., Li, Y.C., Wang, J. et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130 Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 2889-2894
|
[75] |
Wang, Q., Wang, Y., Minto, A.W. et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy FASEB J., 22 (2008),pp. 4126-4135
|
[76] |
Wang, X.H., Qian, R.Z., Zhang, W. et al. MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats Clin. Exp. Pharmacol. Physiol., 36 (2009),pp. 181-188
|
[77] |
Xia, H.Q., Pan, Y., Peng, J. et al. Over-expression of miR375 reduces glucose-induced insulin secretion in Nit-1 cells Mol. Biol. Rep., 38 (2011),pp. 3061-3065
|
[78] |
Xiao, J., Luo, X., Lin, H. et al. J. Biol. Chem., 282 (2007),pp. 12363-12367
|
[79] |
Xie, H., Lim, B., Lodish, H.F. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity Diabetes, 58 (2009),pp. 1050-1057
|
[80] |
Xin, X., Chen, S., Khan, Z.A. et al. Akt activation and augmented fibronectin production in hyperhexosemia Am. J. Physiol. Endocrinol. Metab., 293 (2007),pp. E1036-E1044
|
[81] |
Yang, B., Lin, H., Xiao, J. et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2 Nat. Med., 13 (2007),pp. 486-491
|
[82] |
Zampetaki, A., Kiechl, S., Drozdov, I. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes Circ. Res., 107 (2010),pp. 810-817
|
[83] |
Zaragosi, L.E., Wdziekonski, B., Brigand, K.L. et al. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis Genome Biol., 12 (2011),p. R64
|
[84] |
Zhang, Z., Peng, H., Chen, J. et al. MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice FEBS Lett., 583 (2009),pp. 2009-2014
|
[85] |
Zhao, E., Keller, M.P., Rabaglia, M.E. et al. Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice Mamm. Genome, 20 (2009),pp. 476-485
|
[86] |
Zhao, Y., Samal, E., Srivastava, D. Nature, 436 (2005),pp. 214-220
|